{"title":"非牛顿一、两相介质中球体下落的连续性理论及沉降模型","authors":"J. Faitli","doi":"10.1016/j.minpro.2017.09.010","DOIUrl":null,"url":null,"abstract":"<div><p><span>The particle settling is a basic phenomenon: however, it determines the design of many unit operations and machines of mineral processing<span>. A new test device has been developed in order to measure the terminal settling velocity of large steel balls settling in fine particulate solids - water mixtures. The developed inductive sensor does not influence the motion of the ball and it can be applied for non-transparent and non-Newtonian fine suspensions. A new hypothesis, namely a continuity theory for coarse disperse systems is introduced here. According to this theory, if the particles of a fine suspension are so small that they fit into the laminar sub-layer around a settling coarse particle, the fine suspension can be treated as a continuum. If they do not fit, hindered settling dominates between the coarse and fine particles. It was also recognised that if a particle settles at a constant speed in any media that is in an equilibrium state, therefore, the “equilibrium mean surficial shear stress (τ</span></span><sub>e</sub>)” and the “equilibrium mean surficial shear rate” have been introduced. The equilibrium mean surficial shear stress can be calculated initially, because it is simply the force of gravity minus the buoyant force over three times the total surface of the particle. Once τ<sub>e</sub><span> is known, the equivalent Newtonian absolute viscosity can be determined and the terminal settling velocity of particles falling in non-Newtonian media can be calculated by the known procedures for Newtonian fluids.</span></p></div>","PeriodicalId":14022,"journal":{"name":"International Journal of Mineral Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.minpro.2017.09.010","citationCount":"7","resultStr":"{\"title\":\"Continuity theory and settling model for spheres falling in non-Newtonian one- and two-phase media\",\"authors\":\"J. Faitli\",\"doi\":\"10.1016/j.minpro.2017.09.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The particle settling is a basic phenomenon: however, it determines the design of many unit operations and machines of mineral processing<span>. A new test device has been developed in order to measure the terminal settling velocity of large steel balls settling in fine particulate solids - water mixtures. The developed inductive sensor does not influence the motion of the ball and it can be applied for non-transparent and non-Newtonian fine suspensions. A new hypothesis, namely a continuity theory for coarse disperse systems is introduced here. According to this theory, if the particles of a fine suspension are so small that they fit into the laminar sub-layer around a settling coarse particle, the fine suspension can be treated as a continuum. If they do not fit, hindered settling dominates between the coarse and fine particles. It was also recognised that if a particle settles at a constant speed in any media that is in an equilibrium state, therefore, the “equilibrium mean surficial shear stress (τ</span></span><sub>e</sub>)” and the “equilibrium mean surficial shear rate” have been introduced. The equilibrium mean surficial shear stress can be calculated initially, because it is simply the force of gravity minus the buoyant force over three times the total surface of the particle. Once τ<sub>e</sub><span> is known, the equivalent Newtonian absolute viscosity can be determined and the terminal settling velocity of particles falling in non-Newtonian media can be calculated by the known procedures for Newtonian fluids.</span></p></div>\",\"PeriodicalId\":14022,\"journal\":{\"name\":\"International Journal of Mineral Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.minpro.2017.09.010\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mineral Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030175161730203X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mineral Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030175161730203X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Continuity theory and settling model for spheres falling in non-Newtonian one- and two-phase media
The particle settling is a basic phenomenon: however, it determines the design of many unit operations and machines of mineral processing. A new test device has been developed in order to measure the terminal settling velocity of large steel balls settling in fine particulate solids - water mixtures. The developed inductive sensor does not influence the motion of the ball and it can be applied for non-transparent and non-Newtonian fine suspensions. A new hypothesis, namely a continuity theory for coarse disperse systems is introduced here. According to this theory, if the particles of a fine suspension are so small that they fit into the laminar sub-layer around a settling coarse particle, the fine suspension can be treated as a continuum. If they do not fit, hindered settling dominates between the coarse and fine particles. It was also recognised that if a particle settles at a constant speed in any media that is in an equilibrium state, therefore, the “equilibrium mean surficial shear stress (τe)” and the “equilibrium mean surficial shear rate” have been introduced. The equilibrium mean surficial shear stress can be calculated initially, because it is simply the force of gravity minus the buoyant force over three times the total surface of the particle. Once τe is known, the equivalent Newtonian absolute viscosity can be determined and the terminal settling velocity of particles falling in non-Newtonian media can be calculated by the known procedures for Newtonian fluids.
期刊介绍:
International Journal of Mineral Processing has been discontinued as of the end of 2017, due to the merger with Minerals Engineering.
The International Journal of Mineral Processing covers aspects of the processing of mineral resources such as: Metallic and non-metallic ores, coals, and secondary resources. Topics dealt with include: Geometallurgy, comminution, sizing, classification (in air and water), gravity concentration, flotation, electric and magnetic separation, thickening, filtering, drying, and (bio)hydrometallurgy (when applied to low-grade raw materials), control and automation, waste treatment and disposal. In addition to research papers, the journal publishes review articles, technical notes, and letters to the editor..