João M. Villela , Jamil A.A. Anache , Alex M. Watanabe , Dennis C. Flanagan , Edson C. Wendland , Silvio Crestana
{"title":"利用图比例尺实验和基于过程的建模对水蚀示踪剂的性能进行评估","authors":"João M. Villela , Jamil A.A. Anache , Alex M. Watanabe , Dennis C. Flanagan , Edson C. Wendland , Silvio Crestana","doi":"10.1016/j.iswcr.2023.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Socioeconomic and environmental losses caused by water erosion have highlighted the importance of quantifying and understanding the dynamics of soil redistribution in the landscape to develop effective soil management practices. Several methods are applied to estimate erosion/deposition rates and identify sources of sediments, among them, the one that uses rare earth elements (REE) as a tracer stands out. However, an alternative not yet explored that can benefit the accuracy of the estimates provided by the method is using a tracer containing a chemical signature composed of more than one REE. The present study aimed to evaluate the performance of a new water erosion tracer based on montmorillonite labeled with rare earth elements (La40-MMT). The innovative aspects of this La40-MMT tracer include its highly stable multi-chemical signature (Nd<sup>3+</sup>, La<sup>3+</sup>, and Pr<sup>3+</sup>), which enhances tracer detection in the environment, and its low production cost due to the use of an industrial residue in the synthesis process. The tracer was evaluated for a typical soil of the Cerrado biome, using a natural rainfall field-scale plot - NRFP (5 m × 20 m) and a physical predictive erosion model (WEPP). The results showed that the La40-MMT tracer could be used to estimate erosion/deposition rates, with agreement between the values observed with the tracer and the WEPP model. Thus, this study confirmed the great potential of La40-MMT as a tool to identify patterns of soil redistribution at the field scale and aid in the validation of erosion models.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 4","pages":"Pages 622-632"},"PeriodicalIF":7.3000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of a water erosion tracer using plot-scale experiments and process-based modeling\",\"authors\":\"João M. Villela , Jamil A.A. Anache , Alex M. Watanabe , Dennis C. Flanagan , Edson C. Wendland , Silvio Crestana\",\"doi\":\"10.1016/j.iswcr.2023.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Socioeconomic and environmental losses caused by water erosion have highlighted the importance of quantifying and understanding the dynamics of soil redistribution in the landscape to develop effective soil management practices. Several methods are applied to estimate erosion/deposition rates and identify sources of sediments, among them, the one that uses rare earth elements (REE) as a tracer stands out. However, an alternative not yet explored that can benefit the accuracy of the estimates provided by the method is using a tracer containing a chemical signature composed of more than one REE. The present study aimed to evaluate the performance of a new water erosion tracer based on montmorillonite labeled with rare earth elements (La40-MMT). The innovative aspects of this La40-MMT tracer include its highly stable multi-chemical signature (Nd<sup>3+</sup>, La<sup>3+</sup>, and Pr<sup>3+</sup>), which enhances tracer detection in the environment, and its low production cost due to the use of an industrial residue in the synthesis process. The tracer was evaluated for a typical soil of the Cerrado biome, using a natural rainfall field-scale plot - NRFP (5 m × 20 m) and a physical predictive erosion model (WEPP). The results showed that the La40-MMT tracer could be used to estimate erosion/deposition rates, with agreement between the values observed with the tracer and the WEPP model. Thus, this study confirmed the great potential of La40-MMT as a tool to identify patterns of soil redistribution at the field scale and aid in the validation of erosion models.</p></div>\",\"PeriodicalId\":48622,\"journal\":{\"name\":\"International Soil and Water Conservation Research\",\"volume\":\"11 4\",\"pages\":\"Pages 622-632\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Soil and Water Conservation Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095633923000357\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633923000357","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Performance evaluation of a water erosion tracer using plot-scale experiments and process-based modeling
Socioeconomic and environmental losses caused by water erosion have highlighted the importance of quantifying and understanding the dynamics of soil redistribution in the landscape to develop effective soil management practices. Several methods are applied to estimate erosion/deposition rates and identify sources of sediments, among them, the one that uses rare earth elements (REE) as a tracer stands out. However, an alternative not yet explored that can benefit the accuracy of the estimates provided by the method is using a tracer containing a chemical signature composed of more than one REE. The present study aimed to evaluate the performance of a new water erosion tracer based on montmorillonite labeled with rare earth elements (La40-MMT). The innovative aspects of this La40-MMT tracer include its highly stable multi-chemical signature (Nd3+, La3+, and Pr3+), which enhances tracer detection in the environment, and its low production cost due to the use of an industrial residue in the synthesis process. The tracer was evaluated for a typical soil of the Cerrado biome, using a natural rainfall field-scale plot - NRFP (5 m × 20 m) and a physical predictive erosion model (WEPP). The results showed that the La40-MMT tracer could be used to estimate erosion/deposition rates, with agreement between the values observed with the tracer and the WEPP model. Thus, this study confirmed the great potential of La40-MMT as a tool to identify patterns of soil redistribution at the field scale and aid in the validation of erosion models.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research