Yuhan Xie, Houin Kuan, Qin Wei, Alessandra Gianoncelli, G. Ribaudo, P. Coghi
{"title":"(2R,4aS,6aS,12bR,14aS,14bR)10-羟基-N-(4-((6-甲氧基喹啉-8-基)氨基)戊基)-2,4a,6a,9,12b,14a-六甲基-11-氧代-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-十四氢冰-2-甲酰胺","authors":"Yuhan Xie, Houin Kuan, Qin Wei, Alessandra Gianoncelli, G. Ribaudo, P. Coghi","doi":"10.3390/m1716","DOIUrl":null,"url":null,"abstract":"We herein report the synthesis of a derivative of the natural compound celastrol linked to the antimalarial drug primaquine through an amide obtained by the activation of the carboxylic acid with HOBt/EDC. The chemical structure of the new molecule was fully characterized by proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR), heteronuclear single quantum coherence (HSQC), correlation spectroscopy (1H-1H-COSY), distortionless enhancement by polarization transfer (DEPT), mass spectrometry, Fourier-transform infrared (FTIR), and ultraviolet (UV) spectroscopies. Computational studies were enrolled to predict the interaction of the synthesized compound with sarco-endoplasmic reticulum (SR) Ca2+ transport ATPase (SERCA), a target of relevance for developing new therapeutics against arthritis. The drug-likeness of the compound was also investigated by predicting its pharmacokinetic properties.","PeriodicalId":18761,"journal":{"name":"Molbank","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(2R,4aS,6aS,12bR,14aS,14bR)10-Hydroxy-N-(4-((6-methoxyquinolin-8-yl)amino)pentyl)-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydropicene-2-carboxamide\",\"authors\":\"Yuhan Xie, Houin Kuan, Qin Wei, Alessandra Gianoncelli, G. Ribaudo, P. Coghi\",\"doi\":\"10.3390/m1716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We herein report the synthesis of a derivative of the natural compound celastrol linked to the antimalarial drug primaquine through an amide obtained by the activation of the carboxylic acid with HOBt/EDC. The chemical structure of the new molecule was fully characterized by proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR), heteronuclear single quantum coherence (HSQC), correlation spectroscopy (1H-1H-COSY), distortionless enhancement by polarization transfer (DEPT), mass spectrometry, Fourier-transform infrared (FTIR), and ultraviolet (UV) spectroscopies. Computational studies were enrolled to predict the interaction of the synthesized compound with sarco-endoplasmic reticulum (SR) Ca2+ transport ATPase (SERCA), a target of relevance for developing new therapeutics against arthritis. The drug-likeness of the compound was also investigated by predicting its pharmacokinetic properties.\",\"PeriodicalId\":18761,\"journal\":{\"name\":\"Molbank\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molbank\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/m1716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molbank","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/m1716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
We herein report the synthesis of a derivative of the natural compound celastrol linked to the antimalarial drug primaquine through an amide obtained by the activation of the carboxylic acid with HOBt/EDC. The chemical structure of the new molecule was fully characterized by proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR), heteronuclear single quantum coherence (HSQC), correlation spectroscopy (1H-1H-COSY), distortionless enhancement by polarization transfer (DEPT), mass spectrometry, Fourier-transform infrared (FTIR), and ultraviolet (UV) spectroscopies. Computational studies were enrolled to predict the interaction of the synthesized compound with sarco-endoplasmic reticulum (SR) Ca2+ transport ATPase (SERCA), a target of relevance for developing new therapeutics against arthritis. The drug-likeness of the compound was also investigated by predicting its pharmacokinetic properties.