芝麻酚对APP/PS1小鼠认知障碍的保护作用

IF 0.8 4区 农林科学 Q4 FOOD SCIENCE & TECHNOLOGY Acta Alimentaria Pub Date : 2023-04-14 DOI:10.1556/066.2022.00234
Y.L. Xu, Y.D. Zhang, Z.P. Wang, W.W. Chen, C. Fan, J.Q. Xu, T. Wang, S. Rong
{"title":"芝麻酚对APP/PS1小鼠认知障碍的保护作用","authors":"Y.L. Xu, Y.D. Zhang, Z.P. Wang, W.W. Chen, C. Fan, J.Q. Xu, T. Wang, S. Rong","doi":"10.1556/066.2022.00234","DOIUrl":null,"url":null,"abstract":"To explore the effect of sesamol on the cognition of APP/PS1 mice, 8-week-old APP/PS1 and wild-type male mice were divided into AD model group, AD + sesamol (50 mg kg−1 bw) group, and Control group. Sesamol was orally administered once a day for 5 months. Morris water maze was used to evaluate the learning and memory ability of mice. The number of synapses in the hippocampal neurons was detected by Golgi staining. Nissl staining was used to observe the changes of Nissl bodies in CA1 and CA3 regions of the hippocampus. Western blotting was used to detect the expression of Aβ, SIRT1, BDNF, and p-CREB/CREB in the hippocampus and cortex. Compared with the model group, sesamol decreased the latency period of APP/PS1 mice (P < 0.05) and increased the total number of neuronal dendritic spines in the hippocampal CA3 region, as well as increased the number of Nissl bodies (P < 0.05). Western blotting results showed that sesamol significantly reduced Aβ protein expression in the hippocampus and cortex, increased SIRT1 expression in the cortex, and increased BDNF expression in the hippocampus (P < 0.05). Sesamol improved the learning and memory abilities of APP/PS1 mice probably through increasing the density of neuronal dendritic spines and upregulating the levels of SIRT1 and BDNF.","PeriodicalId":6908,"journal":{"name":"Acta Alimentaria","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective effect of sesamol on cognitive impairment in APP/PS1 mice\",\"authors\":\"Y.L. Xu, Y.D. Zhang, Z.P. Wang, W.W. Chen, C. Fan, J.Q. Xu, T. Wang, S. Rong\",\"doi\":\"10.1556/066.2022.00234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To explore the effect of sesamol on the cognition of APP/PS1 mice, 8-week-old APP/PS1 and wild-type male mice were divided into AD model group, AD + sesamol (50 mg kg−1 bw) group, and Control group. Sesamol was orally administered once a day for 5 months. Morris water maze was used to evaluate the learning and memory ability of mice. The number of synapses in the hippocampal neurons was detected by Golgi staining. Nissl staining was used to observe the changes of Nissl bodies in CA1 and CA3 regions of the hippocampus. Western blotting was used to detect the expression of Aβ, SIRT1, BDNF, and p-CREB/CREB in the hippocampus and cortex. Compared with the model group, sesamol decreased the latency period of APP/PS1 mice (P < 0.05) and increased the total number of neuronal dendritic spines in the hippocampal CA3 region, as well as increased the number of Nissl bodies (P < 0.05). Western blotting results showed that sesamol significantly reduced Aβ protein expression in the hippocampus and cortex, increased SIRT1 expression in the cortex, and increased BDNF expression in the hippocampus (P < 0.05). Sesamol improved the learning and memory abilities of APP/PS1 mice probably through increasing the density of neuronal dendritic spines and upregulating the levels of SIRT1 and BDNF.\",\"PeriodicalId\":6908,\"journal\":{\"name\":\"Acta Alimentaria\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Alimentaria\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1556/066.2022.00234\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Alimentaria","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1556/066.2022.00234","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为探讨芝麻酚对APP/PS1小鼠认知能力的影响,将8周龄APP/PS1和野生型雄性小鼠分为AD模型组、AD +芝麻酚(50 mg kg−1 bw)组和对照组。芝麻素每天口服一次,持续5个月。采用Morris水迷宫法评价小鼠的学习记忆能力。采用高尔基染色法检测海马神经元突触数量。采用尼氏染色法观察海马CA1、CA3区尼氏小体的变化。Western blotting检测海马和皮质中Aβ、SIRT1、BDNF和p-CREB/CREB的表达。与模型组比较,芝麻酚使APP/PS1小鼠潜伏期缩短(P < 0.05),海马CA3区神经元树突棘总数增加,尼氏体数量增加(P < 0.05)。Western blotting结果显示,芝麻酚显著降低海马和皮质中Aβ蛋白的表达,增加皮质中SIRT1的表达,增加海马中BDNF的表达(P < 0.05)。Sesamol改善APP/PS1小鼠的学习和记忆能力可能是通过增加神经元树突棘的密度和上调SIRT1和BDNF的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protective effect of sesamol on cognitive impairment in APP/PS1 mice
To explore the effect of sesamol on the cognition of APP/PS1 mice, 8-week-old APP/PS1 and wild-type male mice were divided into AD model group, AD + sesamol (50 mg kg−1 bw) group, and Control group. Sesamol was orally administered once a day for 5 months. Morris water maze was used to evaluate the learning and memory ability of mice. The number of synapses in the hippocampal neurons was detected by Golgi staining. Nissl staining was used to observe the changes of Nissl bodies in CA1 and CA3 regions of the hippocampus. Western blotting was used to detect the expression of Aβ, SIRT1, BDNF, and p-CREB/CREB in the hippocampus and cortex. Compared with the model group, sesamol decreased the latency period of APP/PS1 mice (P < 0.05) and increased the total number of neuronal dendritic spines in the hippocampal CA3 region, as well as increased the number of Nissl bodies (P < 0.05). Western blotting results showed that sesamol significantly reduced Aβ protein expression in the hippocampus and cortex, increased SIRT1 expression in the cortex, and increased BDNF expression in the hippocampus (P < 0.05). Sesamol improved the learning and memory abilities of APP/PS1 mice probably through increasing the density of neuronal dendritic spines and upregulating the levels of SIRT1 and BDNF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Alimentaria
Acta Alimentaria 农林科学-食品科技
CiteScore
1.80
自引率
0.00%
发文量
47
审稿时长
18-36 weeks
期刊介绍: Acta Alimentaria publishes original papers and reviews on food science (physics, physical chemistry, chemistry, analysis, biology, microbiology, enzymology, engineering, instrumentation, automation and economics of foods, food production and food technology, food quality, post-harvest treatments, food safety and nutrition).
期刊最新文献
Effect of n-3 unsaturated fatty acid diet on C-reactive protein and erythrocyte sedimentation rate in the anti-inflammatory effect of rheumatoid arthritis: A meta-analysis Enhancing fruit spirit quality: Novel approaches to mash acidification techniques Enrichment of apple juice with antioxidant-rich elderberry (Sambucus nigra L) pomace extract Antihyperlipidemic activity of myricetin Mechanochemical depolymerisation, chemical structure, and in vitro prebiotic potential of glucans derived from microcrystalline cellulose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1