{"title":"β-石竹烯在室温和生理温度下诱导脂质双层发生显著变化的ATR-FTIR光谱研究","authors":"I. Yakimov, I. Kolmogorov, I. Le-Deygen","doi":"10.3390/biophysica3030033","DOIUrl":null,"url":null,"abstract":"Beta-caryophyllene (BCP) is a natural bicyclic sesquiterpene with high biological activity. Potentially, it can be used in the treatment of a wide range of neurological diseases. However, to date, there are practically no data on the interaction of BCP with biological membranes. In the present work, we studied for the first time the interaction of BCP with model membranes—liposomes based on egg yolk phosphatidylcholine (Egg PC) with a variable cholesterol content (from 0 to 25 w.%). Using ATR-FTIR spectroscopy, we have shown that the membrane rigidity and cholesterol content dramatically affect the nature of the interaction of BCP with the bilayer both at room temperature and at physiological temperatures. The incorporation of BCP into the thickness of the bilayer leads to changes in the subpolar region of the bilayer, and at a high cholesterol content, it can provoke the formation of defects in the membrane.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beta-Caryophyllene Induces Significant Changes in the Lipid Bilayer at Room and Physiological Temperatures: ATR-FTIR Spectroscopy Studies\",\"authors\":\"I. Yakimov, I. Kolmogorov, I. Le-Deygen\",\"doi\":\"10.3390/biophysica3030033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beta-caryophyllene (BCP) is a natural bicyclic sesquiterpene with high biological activity. Potentially, it can be used in the treatment of a wide range of neurological diseases. However, to date, there are practically no data on the interaction of BCP with biological membranes. In the present work, we studied for the first time the interaction of BCP with model membranes—liposomes based on egg yolk phosphatidylcholine (Egg PC) with a variable cholesterol content (from 0 to 25 w.%). Using ATR-FTIR spectroscopy, we have shown that the membrane rigidity and cholesterol content dramatically affect the nature of the interaction of BCP with the bilayer both at room temperature and at physiological temperatures. The incorporation of BCP into the thickness of the bilayer leads to changes in the subpolar region of the bilayer, and at a high cholesterol content, it can provoke the formation of defects in the membrane.\",\"PeriodicalId\":72401,\"journal\":{\"name\":\"Biophysica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biophysica3030033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biophysica3030033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Beta-Caryophyllene Induces Significant Changes in the Lipid Bilayer at Room and Physiological Temperatures: ATR-FTIR Spectroscopy Studies
Beta-caryophyllene (BCP) is a natural bicyclic sesquiterpene with high biological activity. Potentially, it can be used in the treatment of a wide range of neurological diseases. However, to date, there are practically no data on the interaction of BCP with biological membranes. In the present work, we studied for the first time the interaction of BCP with model membranes—liposomes based on egg yolk phosphatidylcholine (Egg PC) with a variable cholesterol content (from 0 to 25 w.%). Using ATR-FTIR spectroscopy, we have shown that the membrane rigidity and cholesterol content dramatically affect the nature of the interaction of BCP with the bilayer both at room temperature and at physiological temperatures. The incorporation of BCP into the thickness of the bilayer leads to changes in the subpolar region of the bilayer, and at a high cholesterol content, it can provoke the formation of defects in the membrane.