{"title":"随机游走大都会算法的分层模型和调优","authors":"M. Bédard","doi":"10.1155/2019/8740426","DOIUrl":null,"url":null,"abstract":"We obtain weak convergence and optimal scaling results for the random walk Metropolis algorithm with a Gaussian proposal distribution. The sampler is applied to hierarchical target distributions, which form the building block of many Bayesian analyses. The global asymptotically optimal proposal variance derived may be computed as a function of the specific target distribution considered. We also introduce the concept of locally optimal tunings, i.e., tunings that depend on the current position of the Markov chain. The theorems are proved by studying the generator of the first and second components of the algorithm and verifying their convergence to the generator of a modified RWM algorithm and a diffusion process, respectively. The rate at which the algorithm explores its state space is optimized by studying the speed measure of the limiting diffusion process. We illustrate the theory with two examples. Applications of these results on simulated and real data are also presented.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8740426","citationCount":"4","resultStr":"{\"title\":\"Hierarchical Models and Tuning of Random Walk Metropolis Algorithms\",\"authors\":\"M. Bédard\",\"doi\":\"10.1155/2019/8740426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain weak convergence and optimal scaling results for the random walk Metropolis algorithm with a Gaussian proposal distribution. The sampler is applied to hierarchical target distributions, which form the building block of many Bayesian analyses. The global asymptotically optimal proposal variance derived may be computed as a function of the specific target distribution considered. We also introduce the concept of locally optimal tunings, i.e., tunings that depend on the current position of the Markov chain. The theorems are proved by studying the generator of the first and second components of the algorithm and verifying their convergence to the generator of a modified RWM algorithm and a diffusion process, respectively. The rate at which the algorithm explores its state space is optimized by studying the speed measure of the limiting diffusion process. We illustrate the theory with two examples. Applications of these results on simulated and real data are also presented.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/8740426\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/8740426\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/8740426","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hierarchical Models and Tuning of Random Walk Metropolis Algorithms
We obtain weak convergence and optimal scaling results for the random walk Metropolis algorithm with a Gaussian proposal distribution. The sampler is applied to hierarchical target distributions, which form the building block of many Bayesian analyses. The global asymptotically optimal proposal variance derived may be computed as a function of the specific target distribution considered. We also introduce the concept of locally optimal tunings, i.e., tunings that depend on the current position of the Markov chain. The theorems are proved by studying the generator of the first and second components of the algorithm and verifying their convergence to the generator of a modified RWM algorithm and a diffusion process, respectively. The rate at which the algorithm explores its state space is optimized by studying the speed measure of the limiting diffusion process. We illustrate the theory with two examples. Applications of these results on simulated and real data are also presented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.