{"title":"高压实验中的静力学:高压实验人员的一般观察和指南","authors":"K. Takemura","doi":"10.1080/08957959.2021.1903457","DOIUrl":null,"url":null,"abstract":"ABSTRACT The characteristics of hydrostatic stress conditions are discussed and compared with real experimental observations made under high pressure with a diamond-anvil cell. While fluid pressure-transmitting media give a well-defined single stress condition, solid pressure-transmitting media give a variety of stress conditions within the limit of their shear strength under high pressure. Owing to its low shear strength, solid helium would be the best choice for a pressure-transmitting medium to at least 100 GPa. However, helium is so compressible that care should be taken on minimizing irregular deformation of a gasket hole, which often causes complicated stress states. A review is given on the quasi-hydrostatic limits of solidified pressure-transmitting media, and some ways to reduce nonhydrostaticity are discussed including the case of low-temperature experiments.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"41 1","pages":"155 - 174"},"PeriodicalIF":1.2000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08957959.2021.1903457","citationCount":"14","resultStr":"{\"title\":\"Hydrostaticity in high pressure experiments: some general observations and guidelines for high pressure experimenters\",\"authors\":\"K. Takemura\",\"doi\":\"10.1080/08957959.2021.1903457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The characteristics of hydrostatic stress conditions are discussed and compared with real experimental observations made under high pressure with a diamond-anvil cell. While fluid pressure-transmitting media give a well-defined single stress condition, solid pressure-transmitting media give a variety of stress conditions within the limit of their shear strength under high pressure. Owing to its low shear strength, solid helium would be the best choice for a pressure-transmitting medium to at least 100 GPa. However, helium is so compressible that care should be taken on minimizing irregular deformation of a gasket hole, which often causes complicated stress states. A review is given on the quasi-hydrostatic limits of solidified pressure-transmitting media, and some ways to reduce nonhydrostaticity are discussed including the case of low-temperature experiments.\",\"PeriodicalId\":12864,\"journal\":{\"name\":\"High Pressure Research\",\"volume\":\"41 1\",\"pages\":\"155 - 174\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08957959.2021.1903457\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Pressure Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/08957959.2021.1903457\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2021.1903457","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydrostaticity in high pressure experiments: some general observations and guidelines for high pressure experimenters
ABSTRACT The characteristics of hydrostatic stress conditions are discussed and compared with real experimental observations made under high pressure with a diamond-anvil cell. While fluid pressure-transmitting media give a well-defined single stress condition, solid pressure-transmitting media give a variety of stress conditions within the limit of their shear strength under high pressure. Owing to its low shear strength, solid helium would be the best choice for a pressure-transmitting medium to at least 100 GPa. However, helium is so compressible that care should be taken on minimizing irregular deformation of a gasket hole, which often causes complicated stress states. A review is given on the quasi-hydrostatic limits of solidified pressure-transmitting media, and some ways to reduce nonhydrostaticity are discussed including the case of low-temperature experiments.
期刊介绍:
High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as:
condensed matter physics and chemistry
geophysics and planetary physics
synthesis of new materials
chemical kinetics under high pressure
industrial applications
shockwaves in condensed matter
instrumentation and techniques
the application of pressure to food / biomaterials
Theoretical papers of exceptionally high quality are also accepted.