基于微笑和睁开眼睛的自信值寻找视频中的面部表情模式

S. Hadi, Asep K Supriatna, Faishal Wahiduddin, W. Srisayekti, A. Djunaidi, E. Fitriana, A. Abdullah, D. Ekawati
{"title":"基于微笑和睁开眼睛的自信值寻找视频中的面部表情模式","authors":"S. Hadi, Asep K Supriatna, Faishal Wahiduddin, W. Srisayekti, A. Djunaidi, E. Fitriana, A. Abdullah, D. Ekawati","doi":"10.5121/ijaia.2021.12503","DOIUrl":null,"url":null,"abstract":"Facial expression recognition is one of the types of non-verbal communication that is not only commons for human but also plays an essential role in everyday lives. The development of science and technology allows the machine to automatically detect human facial expressions based on images and videos. Numerous facial expression detection methods have been proposed in the literature. This paper presents a method to find three basic facial expressions (neutral, happy, and angry) from two parameter values: smile and eyes-open. The analysis involves a preprocessing step using a combination of pre-designed proprietary algorithm and Luxand library. Firstly, the parameters were mapped into two-dimensional space and then grouped into three clusters using K-means, a popular heuristic clustering method. Secondly, more than 50,000 frames for each video were experimented using the proprietary research data. The result shows that the proposed method successfully performed a simple video analysis of facial expressions.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding Facial Expression Patterns on Videos based on Smile and Eyes-Open Confidence Values\",\"authors\":\"S. Hadi, Asep K Supriatna, Faishal Wahiduddin, W. Srisayekti, A. Djunaidi, E. Fitriana, A. Abdullah, D. Ekawati\",\"doi\":\"10.5121/ijaia.2021.12503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression recognition is one of the types of non-verbal communication that is not only commons for human but also plays an essential role in everyday lives. The development of science and technology allows the machine to automatically detect human facial expressions based on images and videos. Numerous facial expression detection methods have been proposed in the literature. This paper presents a method to find three basic facial expressions (neutral, happy, and angry) from two parameter values: smile and eyes-open. The analysis involves a preprocessing step using a combination of pre-designed proprietary algorithm and Luxand library. Firstly, the parameters were mapped into two-dimensional space and then grouped into three clusters using K-means, a popular heuristic clustering method. Secondly, more than 50,000 frames for each video were experimented using the proprietary research data. The result shows that the proposed method successfully performed a simple video analysis of facial expressions.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijaia.2021.12503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2021.12503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面部表情识别是一种非语言交际方式,它不仅是人类普遍存在的,而且在日常生活中发挥着重要作用。科技的发展使机器能够根据图像和视频自动检测人类的面部表情。在文献中已经提出了许多面部表情检测方法。本文提出了一种从微笑和睁开眼睛两个参数值中寻找三种基本面部表情(中性、快乐和愤怒)的方法。该分析涉及使用预先设计的专有算法和Luxand库相结合的预处理步骤。首先,将参数映射到二维空间中,然后使用K-means(一种流行的启发式聚类方法)将参数分为三个聚类。其次,使用专有研究数据对每个视频进行了超过50,000帧的实验。结果表明,该方法成功地完成了一个简单的面部表情视频分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding Facial Expression Patterns on Videos based on Smile and Eyes-Open Confidence Values
Facial expression recognition is one of the types of non-verbal communication that is not only commons for human but also plays an essential role in everyday lives. The development of science and technology allows the machine to automatically detect human facial expressions based on images and videos. Numerous facial expression detection methods have been proposed in the literature. This paper presents a method to find three basic facial expressions (neutral, happy, and angry) from two parameter values: smile and eyes-open. The analysis involves a preprocessing step using a combination of pre-designed proprietary algorithm and Luxand library. Firstly, the parameters were mapped into two-dimensional space and then grouped into three clusters using K-means, a popular heuristic clustering method. Secondly, more than 50,000 frames for each video were experimented using the proprietary research data. The result shows that the proposed method successfully performed a simple video analysis of facial expressions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1