{"title":"具有高维模型项的小混合过程变量实验的设计、构造和模型选择","authors":"K. Chatterjee, Chang-Yun Lin","doi":"10.1080/08982112.2022.2135444","DOIUrl":null,"url":null,"abstract":"Abstract This paper considers the design construction and model selection for mixture-process variable experiments where the number of variables is large. For such experiments the generalized least squares estimates cannot be obtained and hence it will be difficult to identify the important model terms. To overcome these problems, here we employ the generalized Bayesian-D criterion to choose the optimal design and apply the Bayesian analysis method to select the best model. Two algorithms are developed to implement the proposed methods. A fish-patty experiment demonstrates how the Bayesian approach can be applied to a real experiment. Simulation studies show that the proposed method has a high power to identify important terms and well controls the type I error.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design construction and model selection for small mixture-process variable experiments with high-dimensional model terms\",\"authors\":\"K. Chatterjee, Chang-Yun Lin\",\"doi\":\"10.1080/08982112.2022.2135444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper considers the design construction and model selection for mixture-process variable experiments where the number of variables is large. For such experiments the generalized least squares estimates cannot be obtained and hence it will be difficult to identify the important model terms. To overcome these problems, here we employ the generalized Bayesian-D criterion to choose the optimal design and apply the Bayesian analysis method to select the best model. Two algorithms are developed to implement the proposed methods. A fish-patty experiment demonstrates how the Bayesian approach can be applied to a real experiment. Simulation studies show that the proposed method has a high power to identify important terms and well controls the type I error.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/08982112.2022.2135444\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08982112.2022.2135444","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design construction and model selection for small mixture-process variable experiments with high-dimensional model terms
Abstract This paper considers the design construction and model selection for mixture-process variable experiments where the number of variables is large. For such experiments the generalized least squares estimates cannot be obtained and hence it will be difficult to identify the important model terms. To overcome these problems, here we employ the generalized Bayesian-D criterion to choose the optimal design and apply the Bayesian analysis method to select the best model. Two algorithms are developed to implement the proposed methods. A fish-patty experiment demonstrates how the Bayesian approach can be applied to a real experiment. Simulation studies show that the proposed method has a high power to identify important terms and well controls the type I error.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.