Philipp Dumbach, Leo Schwinn, Tim Löhr, Phi Long Do, Bjoern M. Eskofier
{"title":"使用主题建模和情绪分析对医疗播客进行人工智能趋势分析:一种数据驱动的方法","authors":"Philipp Dumbach, Leo Schwinn, Tim Löhr, Phi Long Do, Bjoern M. Eskofier","doi":"10.1007/s12065-023-00878-4","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":46237,"journal":{"name":"Evolutionary Intelligence","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence trend analysis on healthcare podcasts using topic modeling and sentiment analysis: a data-driven approach\",\"authors\":\"Philipp Dumbach, Leo Schwinn, Tim Löhr, Phi Long Do, Bjoern M. Eskofier\",\"doi\":\"10.1007/s12065-023-00878-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":46237,\"journal\":{\"name\":\"Evolutionary Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12065-023-00878-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12065-023-00878-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
期刊介绍:
This Journal provides an international forum for the timely publication and dissemination of foundational and applied research in the domain of Evolutionary Intelligence. The spectrum of emerging fields in contemporary artificial intelligence, including Big Data, Deep Learning, Computational Neuroscience bridged with evolutionary computing and other population-based search methods constitute the flag of Evolutionary Intelligence Journal.Topics of interest for Evolutionary Intelligence refer to different aspects of evolutionary models of computation empowered with intelligence-based approaches, including but not limited to architectures, model optimization and tuning, machine learning algorithms, life inspired adaptive algorithms, swarm-oriented strategies, high performance computing, massive data processing, with applications to domains like computer vision, image processing, simulation, robotics, computational finance, media, internet of things, medicine, bioinformatics, smart cities, and similar. Surveys outlining the state of art in specific subfields and applications are welcome.