I. Batyrev, P. Cifligu, K. A. Pineda, S. Coleman, M. Pravica
{"title":"草酸锶和镁在高压下的结构和振动光谱","authors":"I. Batyrev, P. Cifligu, K. A. Pineda, S. Coleman, M. Pravica","doi":"10.1080/08957959.2021.1891229","DOIUrl":null,"url":null,"abstract":"ABSTRACT We report theoretical and experimental investigations on the structures of strontium and magnesium oxalates, and corresponding Raman spectra at high pressure. These systems have shown progress in the generation of CO2 and in the synthesis of energetic doped polymeric carbon monoxide after X-ray irradiation and simultaneous application of high pressure. Density functional perturbation theory (DFT) was used to calculate the zone center optical phonons in monoclinic and triclinic strontium oxalate, and the ambient triclinic phase of magnesium oxalate. Vibration modes were also determined in terms of atomic displacements for both compounds. The simulations were compared to experimental Raman spectra in an effort to elucidate the details of the phase transition between monoclinic and triclinic phases. Additional phonon dispersion calculations of the compounds were performed to gain better insight into the dynamic phase stability in strontium and magnesium oxalates under high pressure.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"41 1","pages":"52 - 64"},"PeriodicalIF":1.2000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08957959.2021.1891229","citationCount":"0","resultStr":"{\"title\":\"Structure and vibration spectra of strontium and magnesium oxalates at high pressure\",\"authors\":\"I. Batyrev, P. Cifligu, K. A. Pineda, S. Coleman, M. Pravica\",\"doi\":\"10.1080/08957959.2021.1891229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We report theoretical and experimental investigations on the structures of strontium and magnesium oxalates, and corresponding Raman spectra at high pressure. These systems have shown progress in the generation of CO2 and in the synthesis of energetic doped polymeric carbon monoxide after X-ray irradiation and simultaneous application of high pressure. Density functional perturbation theory (DFT) was used to calculate the zone center optical phonons in monoclinic and triclinic strontium oxalate, and the ambient triclinic phase of magnesium oxalate. Vibration modes were also determined in terms of atomic displacements for both compounds. The simulations were compared to experimental Raman spectra in an effort to elucidate the details of the phase transition between monoclinic and triclinic phases. Additional phonon dispersion calculations of the compounds were performed to gain better insight into the dynamic phase stability in strontium and magnesium oxalates under high pressure.\",\"PeriodicalId\":12864,\"journal\":{\"name\":\"High Pressure Research\",\"volume\":\"41 1\",\"pages\":\"52 - 64\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08957959.2021.1891229\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Pressure Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/08957959.2021.1891229\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2021.1891229","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure and vibration spectra of strontium and magnesium oxalates at high pressure
ABSTRACT We report theoretical and experimental investigations on the structures of strontium and magnesium oxalates, and corresponding Raman spectra at high pressure. These systems have shown progress in the generation of CO2 and in the synthesis of energetic doped polymeric carbon monoxide after X-ray irradiation and simultaneous application of high pressure. Density functional perturbation theory (DFT) was used to calculate the zone center optical phonons in monoclinic and triclinic strontium oxalate, and the ambient triclinic phase of magnesium oxalate. Vibration modes were also determined in terms of atomic displacements for both compounds. The simulations were compared to experimental Raman spectra in an effort to elucidate the details of the phase transition between monoclinic and triclinic phases. Additional phonon dispersion calculations of the compounds were performed to gain better insight into the dynamic phase stability in strontium and magnesium oxalates under high pressure.
期刊介绍:
High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as:
condensed matter physics and chemistry
geophysics and planetary physics
synthesis of new materials
chemical kinetics under high pressure
industrial applications
shockwaves in condensed matter
instrumentation and techniques
the application of pressure to food / biomaterials
Theoretical papers of exceptionally high quality are also accepted.