纳米粒基氯苯那敏凝胶治疗轻至中度皮肤过敏的配方及评价

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Experimental Nanoscience Pub Date : 2022-07-19 DOI:10.1080/17458080.2022.2094915
U. Afreen, Khairi Mustafa Salem Fahelelbom, Syed Nisar Hussain Shah, A. Ashames, U. Almas, S. Khan, M. Yameen, Naveed Nisar, M. Asad, G. Murtaza
{"title":"纳米粒基氯苯那敏凝胶治疗轻至中度皮肤过敏的配方及评价","authors":"U. Afreen, Khairi Mustafa Salem Fahelelbom, Syed Nisar Hussain Shah, A. Ashames, U. Almas, S. Khan, M. Yameen, Naveed Nisar, M. Asad, G. Murtaza","doi":"10.1080/17458080.2022.2094915","DOIUrl":null,"url":null,"abstract":"Abstract Purpose of present study was to develop eight formulations of chlorpheniramine (CPM) niosomes according to 23 factorial design, characterise on the basis of various evaluation tests, i.e. in vitro drug release, SEM, FTIR, TGA and release kinetics, optimise the eight formulation on the basis in vitro drug release data, formulate gel of optimised dispersion, and to perform in vivo and histopathological study using gel of optimised dispersion on rabbits. Here, N3 having low level of cholesterol and span-80 but high level of span-60(0.1:0.2:0.05) was selected as optimised dispersion of niosomes that showed highest drug release i.e. 88.25% at pH 6 over 24 h of study and followed Korsmeyers-Peppas release kinetics with Fickian diffusion mechanism. After application of statistic by Analysis of variance (ANOVA) with 3D surface plots construction, gel of optimised dispersion of CPM niosomes was formulated, and evaluated by tests for i.e. viscosity, Spreadability, Extrudibility, drug content, drug entrapment, stability, SEM, FTIR, TGA, in vitro drug release, in vivo drug release following first order kinetics and histopathological study. Niosomal gel of CPM ensured successful development using suitable combination of non-ionic surfactants, and effective loading of drug for targeted delivery of drug.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"17 1","pages":"467 - 495"},"PeriodicalIF":2.6000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Formulation and evaluation of niosomes-based chlorpheniramine gel for the treatment of mild to moderate skin allergy\",\"authors\":\"U. Afreen, Khairi Mustafa Salem Fahelelbom, Syed Nisar Hussain Shah, A. Ashames, U. Almas, S. Khan, M. Yameen, Naveed Nisar, M. Asad, G. Murtaza\",\"doi\":\"10.1080/17458080.2022.2094915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Purpose of present study was to develop eight formulations of chlorpheniramine (CPM) niosomes according to 23 factorial design, characterise on the basis of various evaluation tests, i.e. in vitro drug release, SEM, FTIR, TGA and release kinetics, optimise the eight formulation on the basis in vitro drug release data, formulate gel of optimised dispersion, and to perform in vivo and histopathological study using gel of optimised dispersion on rabbits. Here, N3 having low level of cholesterol and span-80 but high level of span-60(0.1:0.2:0.05) was selected as optimised dispersion of niosomes that showed highest drug release i.e. 88.25% at pH 6 over 24 h of study and followed Korsmeyers-Peppas release kinetics with Fickian diffusion mechanism. After application of statistic by Analysis of variance (ANOVA) with 3D surface plots construction, gel of optimised dispersion of CPM niosomes was formulated, and evaluated by tests for i.e. viscosity, Spreadability, Extrudibility, drug content, drug entrapment, stability, SEM, FTIR, TGA, in vitro drug release, in vivo drug release following first order kinetics and histopathological study. Niosomal gel of CPM ensured successful development using suitable combination of non-ionic surfactants, and effective loading of drug for targeted delivery of drug.\",\"PeriodicalId\":15673,\"journal\":{\"name\":\"Journal of Experimental Nanoscience\",\"volume\":\"17 1\",\"pages\":\"467 - 495\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Nanoscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/17458080.2022.2094915\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17458080.2022.2094915","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

摘要本研究的目的是根据23因子设计研制氯苯那敏(chlorpheniramine, CPM)小体的8种剂型,通过体外释药、扫描电镜(SEM)、红外光谱(FTIR)、热重分析仪(TGA)和释放动力学等评价试验对其进行表征,并根据体外释药数据对8种剂型进行优化,制备优化分散体凝胶,并用优化分散体凝胶对家兔进行体内和组织病理学研究。本研究选择低胆固醇、低span-80、高span-60(0.1:0.2:0.05)的N3作为最佳分散体,在pH 6条件下24 h药物释放最高,达到88.25%,并遵循kosmeyers - peppas释放动力学和Fickian扩散机制。应用方差分析(ANOVA)和三维表面图构建的统计学方法,配制出优化的CPM膜小体分散体凝胶,并通过粘度、展布性、挤出性、药物含量、药物包裹、稳定性、扫描电镜(SEM)、红外光谱(FTIR)、热重分析仪(TGA)、体外药物释放、体内药物释放等一级动力学和组织病理学研究对其进行评价。CPM的乳质体凝胶通过非离子表面活性剂的适当组合和药物的有效负载来保证药物的靶向递送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formulation and evaluation of niosomes-based chlorpheniramine gel for the treatment of mild to moderate skin allergy
Abstract Purpose of present study was to develop eight formulations of chlorpheniramine (CPM) niosomes according to 23 factorial design, characterise on the basis of various evaluation tests, i.e. in vitro drug release, SEM, FTIR, TGA and release kinetics, optimise the eight formulation on the basis in vitro drug release data, formulate gel of optimised dispersion, and to perform in vivo and histopathological study using gel of optimised dispersion on rabbits. Here, N3 having low level of cholesterol and span-80 but high level of span-60(0.1:0.2:0.05) was selected as optimised dispersion of niosomes that showed highest drug release i.e. 88.25% at pH 6 over 24 h of study and followed Korsmeyers-Peppas release kinetics with Fickian diffusion mechanism. After application of statistic by Analysis of variance (ANOVA) with 3D surface plots construction, gel of optimised dispersion of CPM niosomes was formulated, and evaluated by tests for i.e. viscosity, Spreadability, Extrudibility, drug content, drug entrapment, stability, SEM, FTIR, TGA, in vitro drug release, in vivo drug release following first order kinetics and histopathological study. Niosomal gel of CPM ensured successful development using suitable combination of non-ionic surfactants, and effective loading of drug for targeted delivery of drug.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Nanoscience
Journal of Experimental Nanoscience 工程技术-材料科学:综合
CiteScore
4.10
自引率
25.00%
发文量
39
审稿时长
6.5 months
期刊介绍: Journal of Experimental Nanoscience, an international and multidisciplinary journal, provides a showcase for advances in the experimental sciences underlying nanotechnology and nanomaterials. The journal exists to bring together the most significant papers making original contributions to nanoscience in a range of fields including biology and biochemistry, physics, chemistry, chemical, electrical and mechanical engineering, materials, pharmaceuticals and medicine. The aim is to provide a forum in which cross fertilization between application areas, methodologies, disciplines, as well as academic and industrial researchers can take place and new developments can be encouraged.
期刊最新文献
Inhibition of restenosis after balloon injury in rabbit vessels by integrin αvβ3-targeted 10058-F4 nanoparticles Enhancing structural and optical properties of titanium dioxide nanoparticles (TiO2 NPs) incorporating with indium tin oxide nanoparticles (ITO NPs): effects of annealing temperature Alginate-wrapped NiO-ZnO nanocomposites-based catalysts for water treatment Evolution of the precursor structure during the preparation of the nanopowders with perovskite-type LnLn’O3 (Ln, Ln’ = REE) complex oxide phase in the La2O3-Lu2O3-Yb2O3 system Statement of Retraction: Image processing algorithm for mechanical properties testing of high temperature materials based on time‐frequency analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1