K. You, P. Flemings, Athma R. Bhandari, M. Heidari, J. Germaine
{"title":"蠕变在地压发展中的作用","authors":"K. You, P. Flemings, Athma R. Bhandari, M. Heidari, J. Germaine","doi":"10.1144/petgeo2021-064","DOIUrl":null,"url":null,"abstract":"This study developed a one-dimensional numerical model of sedimentation and compaction based on the equivalent isochrone framework to investigate the impact of creep on geopressure during burial. In this framework, the void ratio is a function of effective stress and strain rate; the change in void ratio is the same with each order of magnitude decrease in strain rate at a constant effective stress. We simulated lower void ratio and higher overpressure when creep was included compared to cases where no creep was present and void ratio is only a function of effective stress. Creep causes apparent overconsolidation. The apparent overconsolidation ratio is used to quantify the magnitude of creep; this is the vertical distance from the normal compression curve in a void ratio versus effective stress plot. The magnitude of creep depends on the loading rate, and increases with depth at sites with low sedimentation rates. These findings bridge the gap between laboratory and field observations on rock compression behaviors. For example, it provides one explanation why laboratory-derived compression curves have a higher void ratio at a given effective stress. In addition, it suggests under what conditions the rock will behave elastically.Thematic collection: This article is part of the Geopressure collection available at: https://www.lyellcollection.org/cc/geopressure","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Role of Creep in Geopressure Development\",\"authors\":\"K. You, P. Flemings, Athma R. Bhandari, M. Heidari, J. Germaine\",\"doi\":\"10.1144/petgeo2021-064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study developed a one-dimensional numerical model of sedimentation and compaction based on the equivalent isochrone framework to investigate the impact of creep on geopressure during burial. In this framework, the void ratio is a function of effective stress and strain rate; the change in void ratio is the same with each order of magnitude decrease in strain rate at a constant effective stress. We simulated lower void ratio and higher overpressure when creep was included compared to cases where no creep was present and void ratio is only a function of effective stress. Creep causes apparent overconsolidation. The apparent overconsolidation ratio is used to quantify the magnitude of creep; this is the vertical distance from the normal compression curve in a void ratio versus effective stress plot. The magnitude of creep depends on the loading rate, and increases with depth at sites with low sedimentation rates. These findings bridge the gap between laboratory and field observations on rock compression behaviors. For example, it provides one explanation why laboratory-derived compression curves have a higher void ratio at a given effective stress. In addition, it suggests under what conditions the rock will behave elastically.Thematic collection: This article is part of the Geopressure collection available at: https://www.lyellcollection.org/cc/geopressure\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2021-064\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2021-064","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
This study developed a one-dimensional numerical model of sedimentation and compaction based on the equivalent isochrone framework to investigate the impact of creep on geopressure during burial. In this framework, the void ratio is a function of effective stress and strain rate; the change in void ratio is the same with each order of magnitude decrease in strain rate at a constant effective stress. We simulated lower void ratio and higher overpressure when creep was included compared to cases where no creep was present and void ratio is only a function of effective stress. Creep causes apparent overconsolidation. The apparent overconsolidation ratio is used to quantify the magnitude of creep; this is the vertical distance from the normal compression curve in a void ratio versus effective stress plot. The magnitude of creep depends on the loading rate, and increases with depth at sites with low sedimentation rates. These findings bridge the gap between laboratory and field observations on rock compression behaviors. For example, it provides one explanation why laboratory-derived compression curves have a higher void ratio at a given effective stress. In addition, it suggests under what conditions the rock will behave elastically.Thematic collection: This article is part of the Geopressure collection available at: https://www.lyellcollection.org/cc/geopressure
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.