树莓酮通过上调HO-1促进3T3-L1脂肪细胞中FNDC5蛋白的表达

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-03-01 DOI:10.4103/cjp.cjp_95_21
Yung‐Chieh Tsai, Jung-Hua Chen, Yen-Mei Lee, M. Yen, P. Cheng
{"title":"树莓酮通过上调HO-1促进3T3-L1脂肪细胞中FNDC5蛋白的表达","authors":"Yung‐Chieh Tsai, Jung-Hua Chen, Yen-Mei Lee, M. Yen, P. Cheng","doi":"10.4103/cjp.cjp_95_21","DOIUrl":null,"url":null,"abstract":"Obesity is a global health problem and a risk factor for cardiovascular diseases and cancers. Exercise is an effective intervention to combat obesity. Fibronectin type III domain containing protein 5 (FNDC5)/irisin, a myokine, can stimulate the browning of white adipose tissue by increasing uncoupling protein 1 (UCP1) expression, and therefore may represent a link between the beneficial effects of exercise and improvement in metabolic diseases. Thus, upregulating the endogenous expression of FNDC5/irisin by administering medication would be a good approach for treating obesity. Herein, we evaluated the efficacy of raspberry ketone (RK) in inducing FNDC5/irisin expression and the underlying mechanisms. The expression of brown fat-specific proteins (PR domain containing 16 (PRDM16), CD137, and UCP1), heme oxygenase-1 (HO-1), FNDC5, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) in differentiated 3T3-L1 adipocyte was analyzed by western blotting or immunofluorescence. The level of irisin in the culture medium was also assayed using an enzyme-linked immunosorbent assay kit. Results showed that RK (50 μM) significantly induced the upregulation of FNDC5 protein in differentiated 3T3-L1 adipocytes; however, the irisin level in the culture media was unaffected. Moreover, RK significantly increased the levels of PGC1α, brown adipocyte markers (PRDM16, CD137, and UCP1), and HO-1. Furthermore, the upregulation of PGC1α and FNDC5 and the browning effect induced by RK were significantly reduced by SnPP or FNDC5 siRNA, respectively. In conclusion, RK can induce FNDC5 protein expression via the HO-1 signaling pathway, and this study provides new evidence for the potential use of RK in the treatment of obesity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Raspberry ketone promotes FNDC5 protein expression via HO-1 upregulation in 3T3-L1 adipocytes\",\"authors\":\"Yung‐Chieh Tsai, Jung-Hua Chen, Yen-Mei Lee, M. Yen, P. Cheng\",\"doi\":\"10.4103/cjp.cjp_95_21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obesity is a global health problem and a risk factor for cardiovascular diseases and cancers. Exercise is an effective intervention to combat obesity. Fibronectin type III domain containing protein 5 (FNDC5)/irisin, a myokine, can stimulate the browning of white adipose tissue by increasing uncoupling protein 1 (UCP1) expression, and therefore may represent a link between the beneficial effects of exercise and improvement in metabolic diseases. Thus, upregulating the endogenous expression of FNDC5/irisin by administering medication would be a good approach for treating obesity. Herein, we evaluated the efficacy of raspberry ketone (RK) in inducing FNDC5/irisin expression and the underlying mechanisms. The expression of brown fat-specific proteins (PR domain containing 16 (PRDM16), CD137, and UCP1), heme oxygenase-1 (HO-1), FNDC5, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) in differentiated 3T3-L1 adipocyte was analyzed by western blotting or immunofluorescence. The level of irisin in the culture medium was also assayed using an enzyme-linked immunosorbent assay kit. Results showed that RK (50 μM) significantly induced the upregulation of FNDC5 protein in differentiated 3T3-L1 adipocytes; however, the irisin level in the culture media was unaffected. Moreover, RK significantly increased the levels of PGC1α, brown adipocyte markers (PRDM16, CD137, and UCP1), and HO-1. Furthermore, the upregulation of PGC1α and FNDC5 and the browning effect induced by RK were significantly reduced by SnPP or FNDC5 siRNA, respectively. In conclusion, RK can induce FNDC5 protein expression via the HO-1 signaling pathway, and this study provides new evidence for the potential use of RK in the treatment of obesity.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/cjp.cjp_95_21\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/cjp.cjp_95_21","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

肥胖是一个全球性的健康问题,也是心血管疾病和癌症的危险因素。运动是对抗肥胖的有效手段。纤维连接蛋白III型结构域含有蛋白5 (FNDC5)/鸢尾素,一种肌因子,可以通过增加解偶联蛋白1 (UCP1)的表达来刺激白色脂肪组织的褐化,因此可能代表了运动的有益效果与代谢疾病的改善之间的联系。因此,通过给药上调内源性FNDC5/irisin的表达将是治疗肥胖的一个很好的方法。在此,我们评估了覆盆子酮(RK)诱导FNDC5/irisin表达的功效及其潜在机制。采用western blotting或免疫荧光法分析3T3-L1脂肪细胞中棕色脂肪特异性蛋白(PR结构域16 (PRDM16)、CD137和UCP1)、血红素加氧酶-1 (HO-1)、FNDC5和过氧化物酶体增殖物激活受体γ辅助激活因子1- α (PGC1α)的表达。用酶联免疫吸附测定试剂盒测定培养基中鸢尾素的水平。结果表明,RK (50 μM)显著诱导分化的3T3-L1脂肪细胞中FNDC5蛋白表达上调;然而,培养基中的鸢尾素水平不受影响。此外,RK显著提高了PGC1α、棕色脂肪细胞标志物(PRDM16、CD137和UCP1)和HO-1的水平。此外,SnPP或FNDC5 siRNA分别显著降低了RK诱导的PGC1α和FNDC5上调及褐变效应。综上所述,RK可通过HO-1信号通路诱导FNDC5蛋白表达,本研究为RK在肥胖症治疗中的潜在应用提供了新的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Raspberry ketone promotes FNDC5 protein expression via HO-1 upregulation in 3T3-L1 adipocytes
Obesity is a global health problem and a risk factor for cardiovascular diseases and cancers. Exercise is an effective intervention to combat obesity. Fibronectin type III domain containing protein 5 (FNDC5)/irisin, a myokine, can stimulate the browning of white adipose tissue by increasing uncoupling protein 1 (UCP1) expression, and therefore may represent a link between the beneficial effects of exercise and improvement in metabolic diseases. Thus, upregulating the endogenous expression of FNDC5/irisin by administering medication would be a good approach for treating obesity. Herein, we evaluated the efficacy of raspberry ketone (RK) in inducing FNDC5/irisin expression and the underlying mechanisms. The expression of brown fat-specific proteins (PR domain containing 16 (PRDM16), CD137, and UCP1), heme oxygenase-1 (HO-1), FNDC5, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) in differentiated 3T3-L1 adipocyte was analyzed by western blotting or immunofluorescence. The level of irisin in the culture medium was also assayed using an enzyme-linked immunosorbent assay kit. Results showed that RK (50 μM) significantly induced the upregulation of FNDC5 protein in differentiated 3T3-L1 adipocytes; however, the irisin level in the culture media was unaffected. Moreover, RK significantly increased the levels of PGC1α, brown adipocyte markers (PRDM16, CD137, and UCP1), and HO-1. Furthermore, the upregulation of PGC1α and FNDC5 and the browning effect induced by RK were significantly reduced by SnPP or FNDC5 siRNA, respectively. In conclusion, RK can induce FNDC5 protein expression via the HO-1 signaling pathway, and this study provides new evidence for the potential use of RK in the treatment of obesity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome. The prevention of medication errors in the home care setting: a scoping review. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1