预裂纹和酸性环境下管道钢中氢气扩散的模拟

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Computational Materials Science and Engineering Pub Date : 2022-04-18 DOI:10.1142/s204768412250004x
M. Asadipoor, M. Asadipour, J. Kadkhodapour, A. Pourkamali Anaraki
{"title":"预裂纹和酸性环境下管道钢中氢气扩散的模拟","authors":"M. Asadipoor, M. Asadipour, J. Kadkhodapour, A. Pourkamali Anaraki","doi":"10.1142/s204768412250004x","DOIUrl":null,"url":null,"abstract":"Purpose: In this work, the influences of different field operating parameters (pH and partial pressure of H2S) and crack types (isolated and cluster cracks) are investigated on the distribution of hydrogen concentration in pipeline steel. Design/methodology/approach: A numerical simulation based on the finite element method was performed using the COMSOL Multiphysics software to achieve the objectives. Findings: Hydrogen concentration and total hydrogen flux are increased when pH decreases and [Formula: see text] increases. Besides, the crack flanks are the most appropriate areas for hydrogen diffusion. Accordingly, the areas including step-wise cracking absorb more atomic hydrogen, and the space between the upper surface of the crack and the outer wall is no longer protected. Furthermore, the computational results reveal how a blister on the top of a cluster crack can be crucial by providing enough area for hydrogen to diffuse, and the area between the crack top surface and the outer wall could no longer be protected from hydrogen flux. Originality: Evaluation of hydrogen concentration in different areas of isolated and cluster cracks under different field operating conditions (pH and [Formula: see text] is not yet understood, which is discussed in this study.","PeriodicalId":45186,"journal":{"name":"International Journal of Computational Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of hydrogen diffusion in pipeline steel under pre-cracks and sour environment\",\"authors\":\"M. Asadipoor, M. Asadipour, J. Kadkhodapour, A. Pourkamali Anaraki\",\"doi\":\"10.1142/s204768412250004x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: In this work, the influences of different field operating parameters (pH and partial pressure of H2S) and crack types (isolated and cluster cracks) are investigated on the distribution of hydrogen concentration in pipeline steel. Design/methodology/approach: A numerical simulation based on the finite element method was performed using the COMSOL Multiphysics software to achieve the objectives. Findings: Hydrogen concentration and total hydrogen flux are increased when pH decreases and [Formula: see text] increases. Besides, the crack flanks are the most appropriate areas for hydrogen diffusion. Accordingly, the areas including step-wise cracking absorb more atomic hydrogen, and the space between the upper surface of the crack and the outer wall is no longer protected. Furthermore, the computational results reveal how a blister on the top of a cluster crack can be crucial by providing enough area for hydrogen to diffuse, and the area between the crack top surface and the outer wall could no longer be protected from hydrogen flux. Originality: Evaluation of hydrogen concentration in different areas of isolated and cluster cracks under different field operating conditions (pH and [Formula: see text] is not yet understood, which is discussed in this study.\",\"PeriodicalId\":45186,\"journal\":{\"name\":\"International Journal of Computational Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s204768412250004x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s204768412250004x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究不同现场操作参数(H2S的pH和分压)和裂纹类型(孤立裂纹和簇状裂纹)对管道钢中氢浓度分布的影响。设计/方法/方法:利用COMSOL Multiphysics软件进行基于有限元法的数值模拟以实现目标。结果:随着pH值的减小和[公式:见文]的增大,氢浓度和总氢通量增加。裂纹侧翼是氢扩散最适宜的区域。因此,包含阶梯式裂缝的区域吸收了更多的原子氢,裂缝上表面与外壁之间的空间不再受到保护。此外,计算结果揭示了簇状裂纹顶部的气泡如何为氢气扩散提供足够的区域,并且裂纹顶部表面和外壁之间的区域不再受到氢气通量的保护。独创性:在不同现场操作条件下(pH和[公式:见文]),对隔离裂缝和簇状裂缝不同区域的氢浓度的评价尚不清楚,本研究对此进行讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of hydrogen diffusion in pipeline steel under pre-cracks and sour environment
Purpose: In this work, the influences of different field operating parameters (pH and partial pressure of H2S) and crack types (isolated and cluster cracks) are investigated on the distribution of hydrogen concentration in pipeline steel. Design/methodology/approach: A numerical simulation based on the finite element method was performed using the COMSOL Multiphysics software to achieve the objectives. Findings: Hydrogen concentration and total hydrogen flux are increased when pH decreases and [Formula: see text] increases. Besides, the crack flanks are the most appropriate areas for hydrogen diffusion. Accordingly, the areas including step-wise cracking absorb more atomic hydrogen, and the space between the upper surface of the crack and the outer wall is no longer protected. Furthermore, the computational results reveal how a blister on the top of a cluster crack can be crucial by providing enough area for hydrogen to diffuse, and the area between the crack top surface and the outer wall could no longer be protected from hydrogen flux. Originality: Evaluation of hydrogen concentration in different areas of isolated and cluster cracks under different field operating conditions (pH and [Formula: see text] is not yet understood, which is discussed in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
15.40%
发文量
27
期刊最新文献
Gravity driven thin film flow of a third grade fluid on a movable inclined plane with slip boundary condition Insight into the Forced Convective Radiative Stefan flow of Nanofluid over an Unsteady Stretched Sheet Heat Transfer Characteristics in Non-Newtonian Fluids with Variable Thermal Conductivity and Cattaneo-Christov Model: A Spectral Collocation Approach Employing Legendre Wavelets Scheme Elastic, Optoelectronic, and Photocatalytic Characteristics of Semiconducting Cesium Niobium Oxide: First Principles Analysis An isogeometric formulation for free vibration and buckling analyses of FG graphene platelets-reinforced porous beams based on a two-variable shear deformation theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1