进口流量和细长比对卧式三相分离器分离性能的影响

IF 1.4 4区 工程技术 Q2 ENGINEERING, PETROLEUM Spe Production & Operations Pub Date : 2021-01-04 DOI:10.2118/205517-pa
T. Ahmed, P. Russell, F. Hamad, S. Gooneratne, N. Makwashi
{"title":"进口流量和细长比对卧式三相分离器分离性能的影响","authors":"T. Ahmed, P. Russell, F. Hamad, S. Gooneratne, N. Makwashi","doi":"10.2118/205517-pa","DOIUrl":null,"url":null,"abstract":"\n In the first part of this work, the development of a capital cost optimization model for sizing three-phase separators was described. The developed model uses generalized reduced gradient nonlinear algorithms to determine the minimum cost associated with the construction of horizontal separators subject to four sets of constraints. In the second part, an experimental test rig was designed and used to investigate the effect of gas flow rate, liquid flow rate, and slenderness ratio (L/D) on the separation performance of horizontal three-phase separators. The results indicated an inverse relationship between an increase in gas and liquid flow rate and the separator outlet quality. It also indicated a direct relationship between an increase in slenderness ratio and separator outlet quality. The results also showed that the gradient change of the percentage of water in the oil outlet with respect to slenderness ratio decreased to ratios of 6:1. Hence, the separation rate increased. At ratios greater than 6:1, the separation still increases, but the gradient change in separation drops off, implying that the benefit in terms of separation is diminishing beyond this point. Therefore, the optimal slenderness ratio for technical reasons is 6:1.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Inlet Flow Rates and Slenderness Ratio on the Separation Performance of a Horizontal Three-Phase Separator\",\"authors\":\"T. Ahmed, P. Russell, F. Hamad, S. Gooneratne, N. Makwashi\",\"doi\":\"10.2118/205517-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the first part of this work, the development of a capital cost optimization model for sizing three-phase separators was described. The developed model uses generalized reduced gradient nonlinear algorithms to determine the minimum cost associated with the construction of horizontal separators subject to four sets of constraints. In the second part, an experimental test rig was designed and used to investigate the effect of gas flow rate, liquid flow rate, and slenderness ratio (L/D) on the separation performance of horizontal three-phase separators. The results indicated an inverse relationship between an increase in gas and liquid flow rate and the separator outlet quality. It also indicated a direct relationship between an increase in slenderness ratio and separator outlet quality. The results also showed that the gradient change of the percentage of water in the oil outlet with respect to slenderness ratio decreased to ratios of 6:1. Hence, the separation rate increased. At ratios greater than 6:1, the separation still increases, but the gradient change in separation drops off, implying that the benefit in terms of separation is diminishing beyond this point. Therefore, the optimal slenderness ratio for technical reasons is 6:1.\",\"PeriodicalId\":22071,\"journal\":{\"name\":\"Spe Production & Operations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spe Production & Operations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/205517-pa\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spe Production & Operations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/205517-pa","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作的第一部分中,描述了用于确定三相分离器尺寸的资本成本优化模型的开发。所开发的模型使用广义降阶非线性算法来确定与受四组约束的水平分离器的建造相关的最小成本。第二部分设计并使用实验台研究了气体流量、液体流量和长细比(L/D)对卧式三相分离器分离性能的影响。结果表明,气体和液体流速的增加与分离器出口质量之间呈反比关系。它还表明长细比的增加与分离器出口质量之间存在直接关系。结果还表明,出油口含水率相对于长细比的梯度变化减小到6:1。因此,分离率增加。在大于6:1的比率下,分离度仍然增加,但分离度的梯度变化下降,这意味着分离的好处在这一点之后正在减少。因此,出于技术原因,最佳长细比为6:1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effects of Inlet Flow Rates and Slenderness Ratio on the Separation Performance of a Horizontal Three-Phase Separator
In the first part of this work, the development of a capital cost optimization model for sizing three-phase separators was described. The developed model uses generalized reduced gradient nonlinear algorithms to determine the minimum cost associated with the construction of horizontal separators subject to four sets of constraints. In the second part, an experimental test rig was designed and used to investigate the effect of gas flow rate, liquid flow rate, and slenderness ratio (L/D) on the separation performance of horizontal three-phase separators. The results indicated an inverse relationship between an increase in gas and liquid flow rate and the separator outlet quality. It also indicated a direct relationship between an increase in slenderness ratio and separator outlet quality. The results also showed that the gradient change of the percentage of water in the oil outlet with respect to slenderness ratio decreased to ratios of 6:1. Hence, the separation rate increased. At ratios greater than 6:1, the separation still increases, but the gradient change in separation drops off, implying that the benefit in terms of separation is diminishing beyond this point. Therefore, the optimal slenderness ratio for technical reasons is 6:1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spe Production & Operations
Spe Production & Operations 工程技术-工程:石油
CiteScore
3.70
自引率
8.30%
发文量
54
审稿时长
3 months
期刊介绍: SPE Production & Operations includes papers on production operations, artificial lift, downhole equipment, formation damage control, multiphase flow, workovers, stimulation, facility design and operations, water treatment, project management, construction methods and equipment, and related PFC systems and emerging technologies.
期刊最新文献
Implementation of a New Proprietary Vortex Fluid Sucker Rod Pump System to Improve Production by Enhancing Flow Dynamics Geomechanical Modeling of Fracture-Induced Vertical Strain Measured by Distributed Fiber-Optic Strain Sensing Kaolinite Effects on Injectivity Impairment: Field Evidence and Laboratory Results Emulsification Characteristics and Electrolyte-Optimized Demulsification of Produced Liquid from Polymer Flooding on Alaska North Slope Dimensionless Artificial Intelligence-Based Model for Multiphase Flow Pattern Recognition in Horizontal Pipe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1