统计神经网络模型中异构传递函数的精度水平

C. Udomboso
{"title":"统计神经网络模型中异构传递函数的精度水平","authors":"C. Udomboso","doi":"10.22237/JMASM/1608553560","DOIUrl":null,"url":null,"abstract":"A heterogeneous function of the statistical neural network is presented from two transfer functions: symmetric saturated linear and hyperbolic tangent sigmoid. The precision of the derived heterogeneous model over their respective homogeneous forms are established, both at increased sample sizes hidden neurons. Results further show the sensitivity of the heterogeneous model to increase in hidden neurons.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"19 1","pages":"2-16"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Level of Precision of a Heterogeneous Transfer Function in a Statistical Neural Network Model\",\"authors\":\"C. Udomboso\",\"doi\":\"10.22237/JMASM/1608553560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A heterogeneous function of the statistical neural network is presented from two transfer functions: symmetric saturated linear and hyperbolic tangent sigmoid. The precision of the derived heterogeneous model over their respective homogeneous forms are established, both at increased sample sizes hidden neurons. Results further show the sensitivity of the heterogeneous model to increase in hidden neurons.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\"19 1\",\"pages\":\"2-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/JMASM/1608553560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/JMASM/1608553560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

从对称饱和线性和双曲正切s型传递函数出发,给出了统计神经网络的异质函数。推导出的异质模型的精度超过了它们各自的同质形式,都是在增加样本大小的隐藏神经元下建立的。结果进一步表明,异质模型对隐藏神经元的敏感性增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Level of Precision of a Heterogeneous Transfer Function in a Statistical Neural Network Model
A heterogeneous function of the statistical neural network is presented from two transfer functions: symmetric saturated linear and hyperbolic tangent sigmoid. The precision of the derived heterogeneous model over their respective homogeneous forms are established, both at increased sample sizes hidden neurons. Results further show the sensitivity of the heterogeneous model to increase in hidden neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
期刊最新文献
The Performance of the Maximum Likelihood Estimator for the Bell Distribution for Count Data Proportionality Adjusted Ratio-Type Calibration Estimators of Population Mean Under Stratified Sampling Moment Properties of Record Values from Rayleigh Lomax Distribution and Characterization Smoothing of Estimators of Population mean using Calibration Technique with Sample Errors Bayesian Estimation and Prediction for Inverse Power Maxwell Distribution with Applications to Tax Revenue and Health Care Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1