Kafel Azeez, A. R. Abu Talib, Riyadh IBRAHEEM AHMED3
{"title":"用氮化铝纳米流体增强波纹面台阶通道的传热-数值研究","authors":"Kafel Azeez, A. R. Abu Talib, Riyadh IBRAHEEM AHMED3","doi":"10.18186/thermal.1197106","DOIUrl":null,"url":null,"abstract":"The present work carries out a three-dimensional numerical analysis study of Aluminium Nitride (AlN)-water hybrid nanofluid enhanced heat transfer in laminar forced convection flow heat exchanger with four different channels, flat, backward facing step, triangle and trapezoidal facing step channels. The influence of different Reynolds number (100≤ Re ≤1500) and different solid nanoparticles volume fraction (1% and 4%) on the heat transfer and fluid flow were numerically investigated. The numerical analysis was carried out by using a laminar model of ANSYS-Fluent CFD code and the governing equations were resolved using the finite volume method. The results indicate that the thermal conductivity of the nanofluids increases with the increase values of both the nanoparticles volume fractions and Reynolds number, compared with base fluids. Likewise, the pressure drop showed slightly increased due to the increased of both parameters. The use of high nanoparticles volume fractions (4% volume) nanofluid corresponded with the use of four different channel designs resulted in heat transfer augmentation about 30% when compared to that pure water for the trapezoidal channel.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Heat transfer enhancement for corrugated facing step channels using aluminium nitride nanofluid - numerical investigation\",\"authors\":\"Kafel Azeez, A. R. Abu Talib, Riyadh IBRAHEEM AHMED3\",\"doi\":\"10.18186/thermal.1197106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work carries out a three-dimensional numerical analysis study of Aluminium Nitride (AlN)-water hybrid nanofluid enhanced heat transfer in laminar forced convection flow heat exchanger with four different channels, flat, backward facing step, triangle and trapezoidal facing step channels. The influence of different Reynolds number (100≤ Re ≤1500) and different solid nanoparticles volume fraction (1% and 4%) on the heat transfer and fluid flow were numerically investigated. The numerical analysis was carried out by using a laminar model of ANSYS-Fluent CFD code and the governing equations were resolved using the finite volume method. The results indicate that the thermal conductivity of the nanofluids increases with the increase values of both the nanoparticles volume fractions and Reynolds number, compared with base fluids. Likewise, the pressure drop showed slightly increased due to the increased of both parameters. The use of high nanoparticles volume fractions (4% volume) nanofluid corresponded with the use of four different channel designs resulted in heat transfer augmentation about 30% when compared to that pure water for the trapezoidal channel.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1197106\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1197106","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Heat transfer enhancement for corrugated facing step channels using aluminium nitride nanofluid - numerical investigation
The present work carries out a three-dimensional numerical analysis study of Aluminium Nitride (AlN)-water hybrid nanofluid enhanced heat transfer in laminar forced convection flow heat exchanger with four different channels, flat, backward facing step, triangle and trapezoidal facing step channels. The influence of different Reynolds number (100≤ Re ≤1500) and different solid nanoparticles volume fraction (1% and 4%) on the heat transfer and fluid flow were numerically investigated. The numerical analysis was carried out by using a laminar model of ANSYS-Fluent CFD code and the governing equations were resolved using the finite volume method. The results indicate that the thermal conductivity of the nanofluids increases with the increase values of both the nanoparticles volume fractions and Reynolds number, compared with base fluids. Likewise, the pressure drop showed slightly increased due to the increased of both parameters. The use of high nanoparticles volume fractions (4% volume) nanofluid corresponded with the use of four different channel designs resulted in heat transfer augmentation about 30% when compared to that pure water for the trapezoidal channel.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.