{"title":"超高层建筑长细比与主要设计准则的相互关系","authors":"H. E. Ilgın","doi":"10.1108/ijbpa-07-2022-0102","DOIUrl":null,"url":null,"abstract":"PurposeTo date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in supertall towers (=300 m). In this paper, this important issue was explored using detailed data collected from 75 cases.Design/methodology/approachThis paper was carried out with a comprehensive literature review including the database of the Council on Tall Buildings and Urban Habitat(CTBUH) (CTBUH, 2022), peer-reviewed journals, MSc theses and PhD dissertations, conference proceedings, fact sheets, architectural and structural magazines and other Internet sources. In this study, the case study method was also used to gather and consolidate information about supertall towers to analyze the interrelationships. Cases were 75 supertall buildings in various countries [44 from Asia (37 from China), 16 from the Middle East (6 from Dubai, the United Arab Emirates), 11 from the United States of America and 3 from Russia, 1 from the UK].FindingsThe paper's findings highlighted as follows: (1) for buildings in the height range of 300–399 m, the slenderness ratio was usually between 7 and 7.9 and megatall towers were frequently built at a slenderness ratio of 10–15; (2) the median slenderness ratio of buildings in the 400–599 m height ranges was around 8.6; (3) a trend towards supertall slender buildings (=8) was observed in Asia, the Middle East and North America; (4) residential, office and mixed-use towers had a median slenderness ratio of over 7.5; (5) all building forms were utilized in the construction of slender towers (>8); (6) the medium slenderness ratio was around 8 for supertall buildings constructed with outriggered frame and tube systems; (7) especially concrete towers reached values pushing the limits of slenderness (>10) and (8) since the number of some supertall building groups (e.g. steel towers) was not sufficient, establishing a scientific relationship between aspect ratio and related design criteria was not possible.Originality/valueTo date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in supertall towers (=300 m). This important issue was explored using detailed data collected from 75 cases.","PeriodicalId":44905,"journal":{"name":"International Journal of Building Pathology and Adaptation","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interrelations of slenderness ratio and main design criteria in supertall buildings\",\"authors\":\"H. E. Ilgın\",\"doi\":\"10.1108/ijbpa-07-2022-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeTo date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in supertall towers (=300 m). In this paper, this important issue was explored using detailed data collected from 75 cases.Design/methodology/approachThis paper was carried out with a comprehensive literature review including the database of the Council on Tall Buildings and Urban Habitat(CTBUH) (CTBUH, 2022), peer-reviewed journals, MSc theses and PhD dissertations, conference proceedings, fact sheets, architectural and structural magazines and other Internet sources. In this study, the case study method was also used to gather and consolidate information about supertall towers to analyze the interrelationships. Cases were 75 supertall buildings in various countries [44 from Asia (37 from China), 16 from the Middle East (6 from Dubai, the United Arab Emirates), 11 from the United States of America and 3 from Russia, 1 from the UK].FindingsThe paper's findings highlighted as follows: (1) for buildings in the height range of 300–399 m, the slenderness ratio was usually between 7 and 7.9 and megatall towers were frequently built at a slenderness ratio of 10–15; (2) the median slenderness ratio of buildings in the 400–599 m height ranges was around 8.6; (3) a trend towards supertall slender buildings (=8) was observed in Asia, the Middle East and North America; (4) residential, office and mixed-use towers had a median slenderness ratio of over 7.5; (5) all building forms were utilized in the construction of slender towers (>8); (6) the medium slenderness ratio was around 8 for supertall buildings constructed with outriggered frame and tube systems; (7) especially concrete towers reached values pushing the limits of slenderness (>10) and (8) since the number of some supertall building groups (e.g. steel towers) was not sufficient, establishing a scientific relationship between aspect ratio and related design criteria was not possible.Originality/valueTo date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in supertall towers (=300 m). This important issue was explored using detailed data collected from 75 cases.\",\"PeriodicalId\":44905,\"journal\":{\"name\":\"International Journal of Building Pathology and Adaptation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Building Pathology and Adaptation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijbpa-07-2022-0102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Building Pathology and Adaptation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijbpa-07-2022-0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Interrelations of slenderness ratio and main design criteria in supertall buildings
PurposeTo date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in supertall towers (=300 m). In this paper, this important issue was explored using detailed data collected from 75 cases.Design/methodology/approachThis paper was carried out with a comprehensive literature review including the database of the Council on Tall Buildings and Urban Habitat(CTBUH) (CTBUH, 2022), peer-reviewed journals, MSc theses and PhD dissertations, conference proceedings, fact sheets, architectural and structural magazines and other Internet sources. In this study, the case study method was also used to gather and consolidate information about supertall towers to analyze the interrelationships. Cases were 75 supertall buildings in various countries [44 from Asia (37 from China), 16 from the Middle East (6 from Dubai, the United Arab Emirates), 11 from the United States of America and 3 from Russia, 1 from the UK].FindingsThe paper's findings highlighted as follows: (1) for buildings in the height range of 300–399 m, the slenderness ratio was usually between 7 and 7.9 and megatall towers were frequently built at a slenderness ratio of 10–15; (2) the median slenderness ratio of buildings in the 400–599 m height ranges was around 8.6; (3) a trend towards supertall slender buildings (=8) was observed in Asia, the Middle East and North America; (4) residential, office and mixed-use towers had a median slenderness ratio of over 7.5; (5) all building forms were utilized in the construction of slender towers (>8); (6) the medium slenderness ratio was around 8 for supertall buildings constructed with outriggered frame and tube systems; (7) especially concrete towers reached values pushing the limits of slenderness (>10) and (8) since the number of some supertall building groups (e.g. steel towers) was not sufficient, establishing a scientific relationship between aspect ratio and related design criteria was not possible.Originality/valueTo date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in supertall towers (=300 m). This important issue was explored using detailed data collected from 75 cases.
期刊介绍:
The International Journal of Building Pathology and Adaptation publishes findings on contemporary and original research towards sustaining, maintaining and managing existing buildings. The journal provides an interdisciplinary approach to the study of buildings, their performance and adaptation in order to develop appropriate technical and management solutions. This requires an holistic understanding of the complex interactions between the materials, components, occupants, design and environment, demanding the application and development of methodologies for diagnosis, prognosis and treatment in this multidisciplinary area. With rapid technological developments, a changing climate and more extreme weather, coupled with developing societal demands, the challenges to the professions responsible are complex and varied; solutions need to be rigorously researched and tested to navigate the dynamic context in which today''s buildings are to be sustained. Within this context, the scope and coverage of the journal incorporates the following indicative topics: • Behavioural and human responses • Building defects and prognosis • Building adaptation and retrofit • Building conservation and restoration • Building Information Modelling (BIM) • Building and planning regulations and legislation • Building technology • Conflict avoidance, management and disputes resolution • Digital information and communication technologies • Education and training • Environmental performance • Energy management • Health, safety and welfare issues • Healthy enclosures • Innovations and innovative technologies • Law and practice of dilapidation • Maintenance and refurbishment • Materials testing • Policy formulation and development • Project management • Resilience • Structural considerations • Surveying methodologies and techniques • Sustainability and climate change • Valuation and financial investment