放射性核素扩散装置物理模型面临的挑战

IF 0.6 CNL Nuclear Review Pub Date : 2017-09-15 DOI:10.12943/CNR.2017.00005
D. Hummel, L. Ivan
{"title":"放射性核素扩散装置物理模型面临的挑战","authors":"D. Hummel, L. Ivan","doi":"10.12943/CNR.2017.00005","DOIUrl":null,"url":null,"abstract":"A “dirty bomb” is a type of hypothetical radiological dispersal device (RDD) that has been the subject of significant safety and security concerns given the disruption that would result in a postulated terrorist attack. Reliable and accurate predictions of dispersion of radiological material from an RDD are absolutely necessary for first responders and emergency decision makers to plan effective response strategies. Development of high-fidelity, mechanistic models of a dirty bomb are complicated because dispersion over areas with the greatest risk of contamination is highly sensitive to the source of contaminant particles, and this source term is governed by processes over much smaller temporal and spatial length scales than the dispersion. New work on accelerating high-fidelity models of RDDs has been initiated that looks to incorporate the multiscale aspects of the problem and enhance predictive capabilities that may assist in anti-terrorism activities.","PeriodicalId":42750,"journal":{"name":"CNL Nuclear Review","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2017-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHALLENGES FOR PHYSICS-BASED MODELS OF A RADIONUCLIDE DISPERSAL DEVICE\",\"authors\":\"D. Hummel, L. Ivan\",\"doi\":\"10.12943/CNR.2017.00005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A “dirty bomb” is a type of hypothetical radiological dispersal device (RDD) that has been the subject of significant safety and security concerns given the disruption that would result in a postulated terrorist attack. Reliable and accurate predictions of dispersion of radiological material from an RDD are absolutely necessary for first responders and emergency decision makers to plan effective response strategies. Development of high-fidelity, mechanistic models of a dirty bomb are complicated because dispersion over areas with the greatest risk of contamination is highly sensitive to the source of contaminant particles, and this source term is governed by processes over much smaller temporal and spatial length scales than the dispersion. New work on accelerating high-fidelity models of RDDs has been initiated that looks to incorporate the multiscale aspects of the problem and enhance predictive capabilities that may assist in anti-terrorism activities.\",\"PeriodicalId\":42750,\"journal\":{\"name\":\"CNL Nuclear Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNL Nuclear Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12943/CNR.2017.00005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNL Nuclear Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12943/CNR.2017.00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

“脏弹”是一种假想的放射性扩散装置(RDD),考虑到可能导致假想恐怖袭击的破坏,它一直是重大安全和安保问题的主题。对RDD放射性物质扩散的可靠和准确预测对于急救人员和应急决策者制定有效的应对策略是绝对必要的。脏弹高保真度机械模型的开发是复杂的,因为在污染风险最大的地区的扩散对污染物颗粒的来源高度敏感,而这个源项是由比扩散小得多的时间和空间长度尺度上的过程控制的。关于加速RDD高保真度模型的新工作已经启动,旨在纳入问题的多尺度方面,并增强可能有助于反恐活动的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CHALLENGES FOR PHYSICS-BASED MODELS OF A RADIONUCLIDE DISPERSAL DEVICE
A “dirty bomb” is a type of hypothetical radiological dispersal device (RDD) that has been the subject of significant safety and security concerns given the disruption that would result in a postulated terrorist attack. Reliable and accurate predictions of dispersion of radiological material from an RDD are absolutely necessary for first responders and emergency decision makers to plan effective response strategies. Development of high-fidelity, mechanistic models of a dirty bomb are complicated because dispersion over areas with the greatest risk of contamination is highly sensitive to the source of contaminant particles, and this source term is governed by processes over much smaller temporal and spatial length scales than the dispersion. New work on accelerating high-fidelity models of RDDs has been initiated that looks to incorporate the multiscale aspects of the problem and enhance predictive capabilities that may assist in anti-terrorism activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CNL Nuclear Review
CNL Nuclear Review NUCLEAR SCIENCE & TECHNOLOGY-
自引率
0.00%
发文量
0
期刊最新文献
HEAT TRANSFER OF CANDU FUEL BUNDLES AFTER A LOSS OF COOLANT ACCIDENT IN AN IRRADIATED FUEL BAY FUEL CYCLE IMPLICATIONS OF DEPLOYING HTGRS IN HYBRID ENERGY SYSTEMS AS RESERVE POWER GENERATION IN ONTARIO MICROSTRUCTURAL CHARACTERIZATION AND TENSILE PROPERTIES ASSESSMENT OF GTAW WELDED INCOLOY 800H ALLOYS FUEL CLADDING FOR SCWR EFFECT OF IODINE AND MOISTURE ON THE MICROSTRUCTURE OF ZIRCALOY-4 UNDER SERVICE CONDITION IN PHWR FINITE ELEMENT ANALYSIS OF AN EMPTY 37-ELEMENT CANDU® FUEL BUNDLE TO STUDY THE EFFECTS OF PRESSURE TUBE CREEP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1