基于光流和熵的人群活动实时视频陌生度定位

IF 1.7 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Online and Biomedical Engineering Pub Date : 2023-06-13 DOI:10.3991/ijoe.v19i07.38869
Ali Abid Hussan Altalbi, Shaimaa Hameed Shaker, Akbas Ezaldeen Ali
{"title":"基于光流和熵的人群活动实时视频陌生度定位","authors":"Ali Abid Hussan Altalbi, Shaimaa Hameed Shaker, Akbas Ezaldeen Ali","doi":"10.3991/ijoe.v19i07.38869","DOIUrl":null,"url":null,"abstract":"Anomaly detection, which is also referred to as novelty detection or outlier detection, is process of identifying unusual occurrences, observations, or events which considerably differ from the bulk of data and do not fit a predetermined definition of typical behavior. Medicine, cybersecurity, statistics, machine vision, law enforcement, neurology, and financial fraud are just a handful of the industries where anomaly detection is used. In the presented study, an online tool is utilized to identify crowd distortions, which could be brought on by panic. An activity map is produced with the use of numerous frames to show the continuity regarding the flow over time following the global optical flow has been calculated in the quickest time and with the highest precision possible utilizing the Farneback approach to calculate the magnitudes. Utilizing a specific threshold, the oddity in the video will be picked up by the activity map's generation of an entropy. The results indicate that the maximum entropy level for indoor video is <0.16 and the maximum entropy level for outdoor video is >0.45. A threshold of 0.04 is used to determine whether a frame is abnormal or normal.","PeriodicalId":36900,"journal":{"name":"International Journal of Online and Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization of Strangeness for Real Time Video in Crowd Activity Using Optical Flow and Entropy\",\"authors\":\"Ali Abid Hussan Altalbi, Shaimaa Hameed Shaker, Akbas Ezaldeen Ali\",\"doi\":\"10.3991/ijoe.v19i07.38869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection, which is also referred to as novelty detection or outlier detection, is process of identifying unusual occurrences, observations, or events which considerably differ from the bulk of data and do not fit a predetermined definition of typical behavior. Medicine, cybersecurity, statistics, machine vision, law enforcement, neurology, and financial fraud are just a handful of the industries where anomaly detection is used. In the presented study, an online tool is utilized to identify crowd distortions, which could be brought on by panic. An activity map is produced with the use of numerous frames to show the continuity regarding the flow over time following the global optical flow has been calculated in the quickest time and with the highest precision possible utilizing the Farneback approach to calculate the magnitudes. Utilizing a specific threshold, the oddity in the video will be picked up by the activity map's generation of an entropy. The results indicate that the maximum entropy level for indoor video is <0.16 and the maximum entropy level for outdoor video is >0.45. A threshold of 0.04 is used to determine whether a frame is abnormal or normal.\",\"PeriodicalId\":36900,\"journal\":{\"name\":\"International Journal of Online and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Online and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijoe.v19i07.38869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v19i07.38869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

异常检测,也被称为新颖性检测或离群值检测,是识别异常事件、观察或事件的过程,这些事件与大量数据有很大的不同,不符合典型行为的预定定义。医学、网络安全、统计、机器视觉、执法、神经病学和金融欺诈只是使用异常检测的少数行业。在本研究中,一个在线工具被用来识别人群扭曲,这可能是由恐慌带来的。利用Farneback方法计算震级,在最快的时间内以最高的精度计算出了全球光流,并使用了许多帧来制作活动图,以显示随时间变化的流的连续性。利用特定的阈值,视频中的异常将被活动地图生成的熵所拾取。结果表明,室内视频的最大熵值为0.45。阈值为0.04,用于判断帧是正常还是异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Localization of Strangeness for Real Time Video in Crowd Activity Using Optical Flow and Entropy
Anomaly detection, which is also referred to as novelty detection or outlier detection, is process of identifying unusual occurrences, observations, or events which considerably differ from the bulk of data and do not fit a predetermined definition of typical behavior. Medicine, cybersecurity, statistics, machine vision, law enforcement, neurology, and financial fraud are just a handful of the industries where anomaly detection is used. In the presented study, an online tool is utilized to identify crowd distortions, which could be brought on by panic. An activity map is produced with the use of numerous frames to show the continuity regarding the flow over time following the global optical flow has been calculated in the quickest time and with the highest precision possible utilizing the Farneback approach to calculate the magnitudes. Utilizing a specific threshold, the oddity in the video will be picked up by the activity map's generation of an entropy. The results indicate that the maximum entropy level for indoor video is <0.16 and the maximum entropy level for outdoor video is >0.45. A threshold of 0.04 is used to determine whether a frame is abnormal or normal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
46.20%
发文量
143
审稿时长
12 weeks
期刊最新文献
Modification of an IMU Based System for Analyzing Hand Kinematics During Activities of Daily Living 3D Pre-Processing Algorithm for MRI Images of Different Stages of AD Segmentation of Retinal Images Using Improved Segmentation Network, MesU-Net Recent Biomaterial Developments for Bone Tissue Engineering and Potential Clinical Application: Narrative Review of the Literature Brain Tumor Localization Using N-Cut
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1