{"title":"心脏电生理学中的精准医学:我们在哪里,我们需要去哪里","authors":"A. Correa, S. Haider, W. Aronow","doi":"10.1080/23808993.2020.1754127","DOIUrl":null,"url":null,"abstract":"ABSTRACT Introduction The treatment of arrhythmias is complex and there are many options including drug therapy, ablation techniques, and implantable devices. Selection of the right treatment strategy is complicated by the fact that patients with apparently the same clinical picture may respond differently to a given therapy, indicating some underlying molecular and cellular differences. We now know this is mediated in a large part by the genetics, and patients with similar phenotypes may have differing genotypes. Understanding this genotype–phenotype relationship is key in modern medicine. Areas covered We have conducted an exhaustive review of the literature surrounding the genetic basis of arrhythmias and have presented a comprehensive summary of the available information. We have demonstrated how understanding the underlying genetic and molecular derangements in arrhythmias has resulted in effective targeted treatments. We have further highlighted novel therapies in arrhythmia management based on emerging genomic research. Expert opinion The future of cardiac electrophysiology, and indeed all cardiovascular medicine, lies in the development of targeted therapies that can effectively treat the individual patient, based on their specific genetic attributes and variations. Future genetic research which drives the development of innovative therapies holds the promise of delivering such personalized therapies in cardiac electrophysiology.","PeriodicalId":12124,"journal":{"name":"Expert Review of Precision Medicine and Drug Development","volume":"5 1","pages":"165 - 180"},"PeriodicalIF":1.0000,"publicationDate":"2020-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23808993.2020.1754127","citationCount":"0","resultStr":"{\"title\":\"Precision medicine in cardiac electrophysiology: where we are and where we need to go\",\"authors\":\"A. Correa, S. Haider, W. Aronow\",\"doi\":\"10.1080/23808993.2020.1754127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Introduction The treatment of arrhythmias is complex and there are many options including drug therapy, ablation techniques, and implantable devices. Selection of the right treatment strategy is complicated by the fact that patients with apparently the same clinical picture may respond differently to a given therapy, indicating some underlying molecular and cellular differences. We now know this is mediated in a large part by the genetics, and patients with similar phenotypes may have differing genotypes. Understanding this genotype–phenotype relationship is key in modern medicine. Areas covered We have conducted an exhaustive review of the literature surrounding the genetic basis of arrhythmias and have presented a comprehensive summary of the available information. We have demonstrated how understanding the underlying genetic and molecular derangements in arrhythmias has resulted in effective targeted treatments. We have further highlighted novel therapies in arrhythmia management based on emerging genomic research. Expert opinion The future of cardiac electrophysiology, and indeed all cardiovascular medicine, lies in the development of targeted therapies that can effectively treat the individual patient, based on their specific genetic attributes and variations. Future genetic research which drives the development of innovative therapies holds the promise of delivering such personalized therapies in cardiac electrophysiology.\",\"PeriodicalId\":12124,\"journal\":{\"name\":\"Expert Review of Precision Medicine and Drug Development\",\"volume\":\"5 1\",\"pages\":\"165 - 180\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23808993.2020.1754127\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Precision Medicine and Drug Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23808993.2020.1754127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Precision Medicine and Drug Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23808993.2020.1754127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Precision medicine in cardiac electrophysiology: where we are and where we need to go
ABSTRACT Introduction The treatment of arrhythmias is complex and there are many options including drug therapy, ablation techniques, and implantable devices. Selection of the right treatment strategy is complicated by the fact that patients with apparently the same clinical picture may respond differently to a given therapy, indicating some underlying molecular and cellular differences. We now know this is mediated in a large part by the genetics, and patients with similar phenotypes may have differing genotypes. Understanding this genotype–phenotype relationship is key in modern medicine. Areas covered We have conducted an exhaustive review of the literature surrounding the genetic basis of arrhythmias and have presented a comprehensive summary of the available information. We have demonstrated how understanding the underlying genetic and molecular derangements in arrhythmias has resulted in effective targeted treatments. We have further highlighted novel therapies in arrhythmia management based on emerging genomic research. Expert opinion The future of cardiac electrophysiology, and indeed all cardiovascular medicine, lies in the development of targeted therapies that can effectively treat the individual patient, based on their specific genetic attributes and variations. Future genetic research which drives the development of innovative therapies holds the promise of delivering such personalized therapies in cardiac electrophysiology.
期刊介绍:
Expert Review of Precision Medicine and Drug Development publishes primarily review articles covering the development and clinical application of medicine to be used in a personalized therapy setting; in addition, the journal also publishes original research and commentary-style articles. In an era where medicine is recognizing that a one-size-fits-all approach is not always appropriate, it has become necessary to identify patients responsive to treatments and treat patient populations using a tailored approach. Areas covered include: Development and application of drugs targeted to specific genotypes and populations, as well as advanced diagnostic technologies and significant biomarkers that aid in this. Clinical trials and case studies within personalized therapy and drug development. Screening, prediction and prevention of disease, prediction of adverse events, treatment monitoring, effects of metabolomics and microbiomics on treatment. Secondary population research, genome-wide association studies, disease–gene association studies, personal genome technologies. Ethical and cost–benefit issues, the impact to healthcare and business infrastructure, and regulatory issues.