机器学习在持续改进过程中的贡献

IF 1.8 Q3 ENGINEERING, INDUSTRIAL Journal of Quality in Maintenance Engineering Pub Date : 2022-09-21 DOI:10.1108/jqme-03-2022-0019
Imane Mjimer, Es-Saâdia Aoula, E. H. Achouyab
{"title":"机器学习在持续改进过程中的贡献","authors":"Imane Mjimer, Es-Saâdia Aoula, E. H. Achouyab","doi":"10.1108/jqme-03-2022-0019","DOIUrl":null,"url":null,"abstract":"PurposeThe aim of this study is to predict one of the key performance indicators used to improve continually production systems using machine learning techniques known by the ability to teach the machine to perform complex things as opposed to simple statistical methods by giving this machine the historical dataset, according to the kind of machine learning the authors will use, the machine will be able to predict a new output data from the input data given by the user.Design/methodology/approachThis work is divided into six sections: In the first section, the state of art for OEE, machine learning, and regression models. In the second section, the methodology, followed by an experimental study conducted in an automotive company specialised in the manufacturing of manual transmissions.FindingsThe three models show a very high accuracy (higher than 99%), a comparison between these three models was done using three indicators, namely mean absolute error (MAE) mean square error (mean squared error and mean absolute percentage error which shows that the best model is the least angle followed by Bayesian Ridge and automatic relevance determination regression.Originality/valueAs the authors can see many works were done in the different production systems for prediction, the most relevant works were done to predict a parameter in the production system such as The prediction of part thickness in aluminium hot stamping process with partition temperature control the prediction of CO2 trapping performance the prediction of crop yield the prediction of lean manufacturing in automotive parts industry the contribution of the work will be to use the machine learning techniques to predict the key performance indicator “used to measure manufacturing efficiency” which is the overall equipment effectiveness used in the authors’ case to measure the improvement of the production system.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contribution of machine learning in continuous improvement processes\",\"authors\":\"Imane Mjimer, Es-Saâdia Aoula, E. H. Achouyab\",\"doi\":\"10.1108/jqme-03-2022-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe aim of this study is to predict one of the key performance indicators used to improve continually production systems using machine learning techniques known by the ability to teach the machine to perform complex things as opposed to simple statistical methods by giving this machine the historical dataset, according to the kind of machine learning the authors will use, the machine will be able to predict a new output data from the input data given by the user.Design/methodology/approachThis work is divided into six sections: In the first section, the state of art for OEE, machine learning, and regression models. In the second section, the methodology, followed by an experimental study conducted in an automotive company specialised in the manufacturing of manual transmissions.FindingsThe three models show a very high accuracy (higher than 99%), a comparison between these three models was done using three indicators, namely mean absolute error (MAE) mean square error (mean squared error and mean absolute percentage error which shows that the best model is the least angle followed by Bayesian Ridge and automatic relevance determination regression.Originality/valueAs the authors can see many works were done in the different production systems for prediction, the most relevant works were done to predict a parameter in the production system such as The prediction of part thickness in aluminium hot stamping process with partition temperature control the prediction of CO2 trapping performance the prediction of crop yield the prediction of lean manufacturing in automotive parts industry the contribution of the work will be to use the machine learning techniques to predict the key performance indicator “used to measure manufacturing efficiency” which is the overall equipment effectiveness used in the authors’ case to measure the improvement of the production system.\",\"PeriodicalId\":16938,\"journal\":{\"name\":\"Journal of Quality in Maintenance Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality in Maintenance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jqme-03-2022-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality in Maintenance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jqme-03-2022-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是预测一个关键的性能指标,用于改进持续生产系统,使用机器学习技术,通过给机器提供历史数据集来教机器执行复杂的事情,而不是简单的统计方法。根据作者将使用的机器学习类型,机器将能够从用户提供的输入数据中预测新的输出数据。设计/方法/方法本工作分为六个部分:在第一部分中,OEE,机器学习和回归模型的最新技术。在第二部分,方法,其次是在一家专门从事手动变速器制造的汽车公司进行的实验研究。结果三种模型均具有很高的精度(均高于99%),采用平均绝对误差(MAE)、均方误差(均方误差)和平均绝对百分比误差三个指标对三种模型进行比较,结果表明最小角度模型效果最好,其次是贝叶斯岭模型和自动相关性确定回归。原创性/价值作者可以看到,许多作品是在不同的生产系统中完成的,用于预测,最相关的工作是预测生产系统中的一个参数,如预测铝热冲压过程中带有分区温度控制的零件厚度,预测二氧化碳捕获性能,预测作物产量,预测汽车零部件行业的精益制造,这项工作的贡献将是使用机器学习技术来预测“用于衡量制造效率”的关键绩效指标在作者的案例中,使用设备的整体效率来衡量生产系统的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contribution of machine learning in continuous improvement processes
PurposeThe aim of this study is to predict one of the key performance indicators used to improve continually production systems using machine learning techniques known by the ability to teach the machine to perform complex things as opposed to simple statistical methods by giving this machine the historical dataset, according to the kind of machine learning the authors will use, the machine will be able to predict a new output data from the input data given by the user.Design/methodology/approachThis work is divided into six sections: In the first section, the state of art for OEE, machine learning, and regression models. In the second section, the methodology, followed by an experimental study conducted in an automotive company specialised in the manufacturing of manual transmissions.FindingsThe three models show a very high accuracy (higher than 99%), a comparison between these three models was done using three indicators, namely mean absolute error (MAE) mean square error (mean squared error and mean absolute percentage error which shows that the best model is the least angle followed by Bayesian Ridge and automatic relevance determination regression.Originality/valueAs the authors can see many works were done in the different production systems for prediction, the most relevant works were done to predict a parameter in the production system such as The prediction of part thickness in aluminium hot stamping process with partition temperature control the prediction of CO2 trapping performance the prediction of crop yield the prediction of lean manufacturing in automotive parts industry the contribution of the work will be to use the machine learning techniques to predict the key performance indicator “used to measure manufacturing efficiency” which is the overall equipment effectiveness used in the authors’ case to measure the improvement of the production system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Quality in Maintenance Engineering
Journal of Quality in Maintenance Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
4.00
自引率
13.30%
发文量
24
期刊介绍: This exciting journal looks at maintenance engineering from a positive standpoint, and clarifies its recently elevatedstatus as a highly technical, scientific, and complex field. Typical areas examined include: ■Budget and control ■Equipment management ■Maintenance information systems ■Process capability and maintenance ■Process monitoring techniques ■Reliability-based maintenance ■Replacement and life cycle costs ■TQM and maintenance
期刊最新文献
Spare parts management in industry 4.0 era: a literature review Data-driven decision-making in maintenance management and coordination throughout the asset life cycle: an empirical study Joint maintenance planning and production scheduling optimization model for green environment Identification of optimal maintenance parameters for best maintenance and service management system in the SMEs Modeling and solving the multi-objective energy-efficient production planning and scheduling with imperfect maintenance activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1