{"title":"采用田口法对FDM空心球胞的结构参数进行优化","authors":"N. B. Ali, M. Khlif, D. Hammami, C. Bradai","doi":"10.1177/02624893211043324","DOIUrl":null,"url":null,"abstract":"There is a growing need for 3D printing of polymer structures in a cost-effective way and green. This study presents an experimental approach to investigate structural parameters effects on mechanical properties of polylactic acid (PLA) hollow-sphere structures manufactured with fused deposition modeling (FDM). The mechanical behavior characteristics of square_hexagonal stacking, closed_open porosity and parallel_perpendicular compression direction compared to the direction of manufacture under quasi-static uniaxial compression are examined using Taguchi method. The S/N ratio analysis and the Analysis of Variance (ANOVA) were used to find the optimal parameters that improve the mechanical properties (Young modulus, yield strength) and to provide a significant ranking of the different parameters analyzed in this paper. It was found that the optimum level and significance of each process parameter vary for “hexagonal cells,” “open porosity” and “parallel direction.” The optimal values of the results give a Young modulus E of 90.12 MPa and a yield strength σ y of 3 MPa. Furthermore, the experimental results further reveal that the porous structure with the loading direction that is parallel to the direction of manufacture, has a higher strength and a progressive collapse of the cells to those with a perpendicular direction.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimization of structural parameters on hollow spherical cells manufactured by Fused Deposition Modeling (FDM) using Taguchi method\",\"authors\":\"N. B. Ali, M. Khlif, D. Hammami, C. Bradai\",\"doi\":\"10.1177/02624893211043324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing need for 3D printing of polymer structures in a cost-effective way and green. This study presents an experimental approach to investigate structural parameters effects on mechanical properties of polylactic acid (PLA) hollow-sphere structures manufactured with fused deposition modeling (FDM). The mechanical behavior characteristics of square_hexagonal stacking, closed_open porosity and parallel_perpendicular compression direction compared to the direction of manufacture under quasi-static uniaxial compression are examined using Taguchi method. The S/N ratio analysis and the Analysis of Variance (ANOVA) were used to find the optimal parameters that improve the mechanical properties (Young modulus, yield strength) and to provide a significant ranking of the different parameters analyzed in this paper. It was found that the optimum level and significance of each process parameter vary for “hexagonal cells,” “open porosity” and “parallel direction.” The optimal values of the results give a Young modulus E of 90.12 MPa and a yield strength σ y of 3 MPa. Furthermore, the experimental results further reveal that the porous structure with the loading direction that is parallel to the direction of manufacture, has a higher strength and a progressive collapse of the cells to those with a perpendicular direction.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893211043324\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893211043324","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of structural parameters on hollow spherical cells manufactured by Fused Deposition Modeling (FDM) using Taguchi method
There is a growing need for 3D printing of polymer structures in a cost-effective way and green. This study presents an experimental approach to investigate structural parameters effects on mechanical properties of polylactic acid (PLA) hollow-sphere structures manufactured with fused deposition modeling (FDM). The mechanical behavior characteristics of square_hexagonal stacking, closed_open porosity and parallel_perpendicular compression direction compared to the direction of manufacture under quasi-static uniaxial compression are examined using Taguchi method. The S/N ratio analysis and the Analysis of Variance (ANOVA) were used to find the optimal parameters that improve the mechanical properties (Young modulus, yield strength) and to provide a significant ranking of the different parameters analyzed in this paper. It was found that the optimum level and significance of each process parameter vary for “hexagonal cells,” “open porosity” and “parallel direction.” The optimal values of the results give a Young modulus E of 90.12 MPa and a yield strength σ y of 3 MPa. Furthermore, the experimental results further reveal that the porous structure with the loading direction that is parallel to the direction of manufacture, has a higher strength and a progressive collapse of the cells to those with a perpendicular direction.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.