土壤有机质测量系统的研制

IF 1.7 4区 农林科学 Q4 SOIL SCIENCE Soil and Water Research Pub Date : 2021-05-11 DOI:10.17221/18/2021-SWR
Á. Béni, E. Juhász, P. Ragán, Tamás Ratonyi, G. Várbíró, I. Fekete
{"title":"土壤有机质测量系统的研制","authors":"Á. Béni, E. Juhász, P. Ragán, Tamás Ratonyi, G. Várbíró, I. Fekete","doi":"10.17221/18/2021-SWR","DOIUrl":null,"url":null,"abstract":"We managed to create a self-developed sensor system, which is based on the simultaneous reflectance measurements at a 660 and 940 nm wavelength. The ratio of the reflectance refers to the concentration of the soil organic carbon (SOC). This instrument has a calibration range of 1.19 to 6.05 SOC%. The SOC content of twenty-six soil samples was measured by the self-developed system and a standard spectrophotometric method and we found that the SOC estimation in the self-developed system had a good approximation and the differences ranged from –27.72% ~ + 6.99%. We found a strong correlation between the data of the reference measurements (R2 = 0.73) and the values indicated by our self-developed sensor system (Reference (SOX%) =1.4857 × E (SOC%) – 0.7393). This measurement system is easy to use and displays and records the data in real time. This allows one to map an agricultural production area based on the SOC concentration using its built-in GPS unit.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":"16 1","pages":"174-179"},"PeriodicalIF":1.7000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of soil organic matter measurement system\",\"authors\":\"Á. Béni, E. Juhász, P. Ragán, Tamás Ratonyi, G. Várbíró, I. Fekete\",\"doi\":\"10.17221/18/2021-SWR\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We managed to create a self-developed sensor system, which is based on the simultaneous reflectance measurements at a 660 and 940 nm wavelength. The ratio of the reflectance refers to the concentration of the soil organic carbon (SOC). This instrument has a calibration range of 1.19 to 6.05 SOC%. The SOC content of twenty-six soil samples was measured by the self-developed system and a standard spectrophotometric method and we found that the SOC estimation in the self-developed system had a good approximation and the differences ranged from –27.72% ~ + 6.99%. We found a strong correlation between the data of the reference measurements (R2 = 0.73) and the values indicated by our self-developed sensor system (Reference (SOX%) =1.4857 × E (SOC%) – 0.7393). This measurement system is easy to use and displays and records the data in real time. This allows one to map an agricultural production area based on the SOC concentration using its built-in GPS unit.\",\"PeriodicalId\":48982,\"journal\":{\"name\":\"Soil and Water Research\",\"volume\":\"16 1\",\"pages\":\"174-179\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil and Water Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/18/2021-SWR\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Water Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/18/2021-SWR","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

我们成功地创建了一个自主开发的传感器系统,该系统基于660和940 nm波长的同时反射率测量。反射率代表土壤有机碳(SOC)的浓度。该仪器的校准范围为1.19至6.05 SOC%。采用自制系统和标准分光光度法对26个土壤样品的有机碳含量进行了测定,结果表明,自制系统的有机碳估算值具有较好的近似性,差异范围为-27.72% ~ + 6.99%。我们发现参考测量数据与我们自行开发的传感器系统的测量值(参考(SOX%) =1.4857 × E (SOC%) - 0.7393)之间具有很强的相关性(R2 = 0.73)。该测量系统易于使用,并能实时显示和记录数据。这使得人们可以使用内置的GPS单元根据SOC浓度绘制农业生产区的地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of soil organic matter measurement system
We managed to create a self-developed sensor system, which is based on the simultaneous reflectance measurements at a 660 and 940 nm wavelength. The ratio of the reflectance refers to the concentration of the soil organic carbon (SOC). This instrument has a calibration range of 1.19 to 6.05 SOC%. The SOC content of twenty-six soil samples was measured by the self-developed system and a standard spectrophotometric method and we found that the SOC estimation in the self-developed system had a good approximation and the differences ranged from –27.72% ~ + 6.99%. We found a strong correlation between the data of the reference measurements (R2 = 0.73) and the values indicated by our self-developed sensor system (Reference (SOX%) =1.4857 × E (SOC%) – 0.7393). This measurement system is easy to use and displays and records the data in real time. This allows one to map an agricultural production area based on the SOC concentration using its built-in GPS unit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil and Water Research
Soil and Water Research Water resources, Soil Science, Agriculture-WATER RESOURCES
CiteScore
4.60
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: An international peer-reviewed journal published under the auspices of the Czech Academy of Agricultural Sciences and financed by the Ministry of Agriculture of the Czech Republic. Published since 2006. Thematic: original papers, short communications and critical reviews from all fields of science and engineering related to soil and water and their interactions in natural and man-modified landscapes, with a particular focus on agricultural land use. The fields encompassed include, but are not limited to, the basic and applied soil science, soil hydrology, irrigation and drainage of lands, hydrology, management and revitalisation of small water streams and small water reservoirs, including fishponds, soil erosion research and control, drought and flood control, wetland restoration and protection, surface and ground water protection in therms of their quantity and quality.
期刊最新文献
Soil pore structure and its research methods: A review Assessing soil aggregate stability by measuring light transmission decrease during aggregate disintegration Changes in soil properties due to land reclamation and climate change in South Moravian floodplain forest Changes in grassland area in lowlands and marginal uplands: Medium-term differences and potential for carbon farming Soil organic matter quality of variously managed agricultural soil in the Czech Republic evaluated using DRIFT spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1