{"title":"用Grey-Taguchi方法优化Al2024-TiB2复合材料的摩擦学性能","authors":"D. Dey, Abhijit Bhowmik, A. Biswas","doi":"10.1080/13640461.2022.2149361","DOIUrl":null,"url":null,"abstract":"ABSTRACT Present investigation aims at the fabrication of aluminium matrix composites reinforced with different weight percentages of titanium diboride (TiB2) particles and characterisation of their tribological behaviour. Wear tests are carried out on a pin-on-disc tribotester with four different process parameters viz. wt-% of reinforcement, load, sliding velocity and sliding distance. For assessing the tribological performance of composites, grey relational analysis is adopted. The percentage significance of all the parameters on tribological performance has also been evaluated by analysis of variance. Based on Grey-Taguchi approach, the optimal parametric combination is 9 wt-% of reinforcement, 10 N load, 2 m s−1 sliding velocity and 1000 m sliding distance. The optimal parametric combination based on the highest ranking of grey relational grade is validated by a confirmation experiment. Based on the results, it can be concluded that Grey-Taguchi method is an effective tool used for optimising the tribological performance of Al2024-TiB2 composites.","PeriodicalId":13939,"journal":{"name":"International Journal of Cast Metals Research","volume":"35 1","pages":"144 - 151"},"PeriodicalIF":1.3000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tribological performance Optimization of Al2024-TiB2 composites using Grey-Taguchi approach\",\"authors\":\"D. Dey, Abhijit Bhowmik, A. Biswas\",\"doi\":\"10.1080/13640461.2022.2149361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Present investigation aims at the fabrication of aluminium matrix composites reinforced with different weight percentages of titanium diboride (TiB2) particles and characterisation of their tribological behaviour. Wear tests are carried out on a pin-on-disc tribotester with four different process parameters viz. wt-% of reinforcement, load, sliding velocity and sliding distance. For assessing the tribological performance of composites, grey relational analysis is adopted. The percentage significance of all the parameters on tribological performance has also been evaluated by analysis of variance. Based on Grey-Taguchi approach, the optimal parametric combination is 9 wt-% of reinforcement, 10 N load, 2 m s−1 sliding velocity and 1000 m sliding distance. The optimal parametric combination based on the highest ranking of grey relational grade is validated by a confirmation experiment. Based on the results, it can be concluded that Grey-Taguchi method is an effective tool used for optimising the tribological performance of Al2024-TiB2 composites.\",\"PeriodicalId\":13939,\"journal\":{\"name\":\"International Journal of Cast Metals Research\",\"volume\":\"35 1\",\"pages\":\"144 - 151\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cast Metals Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/13640461.2022.2149361\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cast Metals Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/13640461.2022.2149361","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
摘要
摘要:本研究旨在制备不同重量百分比的二硼化钛(TiB2)颗粒增强铝基复合材料,并表征其摩擦学性能。在销盘式摩擦试验机上进行了磨损试验,试验采用了四种不同的工艺参数,即增强率、载荷、滑动速度和滑动距离。采用灰色关联分析法对复合材料的摩擦学性能进行评价。所有参数对摩擦学性能的百分比显著性也通过方差分析进行了评估。基于gray - taguchi方法,优化参数组合为9 wt-%配筋、10 N荷载、2 m s - 1滑动速度和1000 m滑动距离。通过验证实验验证了基于灰色关联度最高排序的最优参数组合。结果表明,gray - taguchi方法是优化Al2024-TiB2复合材料摩擦学性能的有效工具。
Tribological performance Optimization of Al2024-TiB2 composites using Grey-Taguchi approach
ABSTRACT Present investigation aims at the fabrication of aluminium matrix composites reinforced with different weight percentages of titanium diboride (TiB2) particles and characterisation of their tribological behaviour. Wear tests are carried out on a pin-on-disc tribotester with four different process parameters viz. wt-% of reinforcement, load, sliding velocity and sliding distance. For assessing the tribological performance of composites, grey relational analysis is adopted. The percentage significance of all the parameters on tribological performance has also been evaluated by analysis of variance. Based on Grey-Taguchi approach, the optimal parametric combination is 9 wt-% of reinforcement, 10 N load, 2 m s−1 sliding velocity and 1000 m sliding distance. The optimal parametric combination based on the highest ranking of grey relational grade is validated by a confirmation experiment. Based on the results, it can be concluded that Grey-Taguchi method is an effective tool used for optimising the tribological performance of Al2024-TiB2 composites.
期刊介绍:
The International Journal of Cast Metals Research is devoted to the dissemination of peer reviewed information on the science and engineering of cast metals, solidification and casting processes. Assured production of high integrity castings requires an integrated approach that optimises casting, mould and gating design; mould materials and binders; alloy composition and microstructure; metal melting, modification and handling; dimensional control; and finishing and post-treatment of the casting. The Journal reports advances in both the fundamental science and materials and production engineering contributing to the successful manufacture of fit for purpose castings.