Barbora Jankovičová, M. Hutňan, Marianna Czӧlderová, J. Barbušová
{"title":"用酶混合物预处理木质纤维素材料以提高沼气产量","authors":"Barbora Jankovičová, M. Hutňan, Marianna Czӧlderová, J. Barbušová","doi":"10.2478/acs-2022-0005","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this study was to evaluate the effect of an enzymatic mixture on the increase of biogas production from lignocellulosic materials as rapeseed straw, maize waste, and wheat straw. For efficient application of the enzymatic mixture, conditions of its use were optimized regarding 50 °C, pH 7 and an enzyme dose of 0.25 % w/v. Biogas potential test confirmed positive effect of the enzymatic mixture on anaerobic digestion of already thermally and alkali pre-treated lignocellulosic materials, as significantly higher biogas production was observed after the enzymatic mixture addition for all monitored substrates. Addition of the enzymatic mixture to the most used substrate at biogas plants — maize silage, had also positive effect on biogas production during the biogas potential test. This fact was not proven during long-term operations of the reactors as the values of total cumulative biogas productions for the whole monitored period from reactors for anaerobic digestion of maize silage with and without addition of enzymatic mixture did not differ significantly.","PeriodicalId":7088,"journal":{"name":"Acta Chimica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-treatment of lignocellulosic materials by enzymatic mixture to enhance biogas production\",\"authors\":\"Barbora Jankovičová, M. Hutňan, Marianna Czӧlderová, J. Barbušová\",\"doi\":\"10.2478/acs-2022-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this study was to evaluate the effect of an enzymatic mixture on the increase of biogas production from lignocellulosic materials as rapeseed straw, maize waste, and wheat straw. For efficient application of the enzymatic mixture, conditions of its use were optimized regarding 50 °C, pH 7 and an enzyme dose of 0.25 % w/v. Biogas potential test confirmed positive effect of the enzymatic mixture on anaerobic digestion of already thermally and alkali pre-treated lignocellulosic materials, as significantly higher biogas production was observed after the enzymatic mixture addition for all monitored substrates. Addition of the enzymatic mixture to the most used substrate at biogas plants — maize silage, had also positive effect on biogas production during the biogas potential test. This fact was not proven during long-term operations of the reactors as the values of total cumulative biogas productions for the whole monitored period from reactors for anaerobic digestion of maize silage with and without addition of enzymatic mixture did not differ significantly.\",\"PeriodicalId\":7088,\"journal\":{\"name\":\"Acta Chimica Slovaca\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Chimica Slovaca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acs-2022-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chimica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acs-2022-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pre-treatment of lignocellulosic materials by enzymatic mixture to enhance biogas production
Abstract The aim of this study was to evaluate the effect of an enzymatic mixture on the increase of biogas production from lignocellulosic materials as rapeseed straw, maize waste, and wheat straw. For efficient application of the enzymatic mixture, conditions of its use were optimized regarding 50 °C, pH 7 and an enzyme dose of 0.25 % w/v. Biogas potential test confirmed positive effect of the enzymatic mixture on anaerobic digestion of already thermally and alkali pre-treated lignocellulosic materials, as significantly higher biogas production was observed after the enzymatic mixture addition for all monitored substrates. Addition of the enzymatic mixture to the most used substrate at biogas plants — maize silage, had also positive effect on biogas production during the biogas potential test. This fact was not proven during long-term operations of the reactors as the values of total cumulative biogas productions for the whole monitored period from reactors for anaerobic digestion of maize silage with and without addition of enzymatic mixture did not differ significantly.