基于遗传算法的蜂窝网络频率规划优化

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Communications Software and Systems Pub Date : 2020-07-09 DOI:10.24138/jcomss.v16i3.1012
H. Megnafi
{"title":"基于遗传算法的蜂窝网络频率规划优化","authors":"H. Megnafi","doi":"10.24138/jcomss.v16i3.1012","DOIUrl":null,"url":null,"abstract":"Cellular networks are constantly evolving to ensure a better Quality of Service (QoS) and quality of coverage ever more important. The radio cellular systems are based on frequency allocation. In this context, frequency allocation principle consists in choosing an optimal frequency plan to meet traffic demand constraints and communication quality while minimizing the radio interferences. This paper proposes an optimal frequency allocation approach based on genetic algorithms to minimize co-channel and adjacent channel interference. The validation of this new approach is confirmed by the results of the work we have done in the GSM network. In fact, we used the file obtained by the OMC-R, which defines the adjacent cells of each cell and the frequencies allocated to the considered area. The results obtained clearly show the effectiveness and robustness of the approach used.","PeriodicalId":38910,"journal":{"name":"Journal of Communications Software and Systems","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Frequency Plan Optimization Based on Genetic Algorithms for Cellular Networks\",\"authors\":\"H. Megnafi\",\"doi\":\"10.24138/jcomss.v16i3.1012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular networks are constantly evolving to ensure a better Quality of Service (QoS) and quality of coverage ever more important. The radio cellular systems are based on frequency allocation. In this context, frequency allocation principle consists in choosing an optimal frequency plan to meet traffic demand constraints and communication quality while minimizing the radio interferences. This paper proposes an optimal frequency allocation approach based on genetic algorithms to minimize co-channel and adjacent channel interference. The validation of this new approach is confirmed by the results of the work we have done in the GSM network. In fact, we used the file obtained by the OMC-R, which defines the adjacent cells of each cell and the frequencies allocated to the considered area. The results obtained clearly show the effectiveness and robustness of the approach used.\",\"PeriodicalId\":38910,\"journal\":{\"name\":\"Journal of Communications Software and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications Software and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24138/jcomss.v16i3.1012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications Software and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24138/jcomss.v16i3.1012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

摘要

蜂窝网络不断发展,以确保更好的服务质量(QoS)和覆盖质量变得越来越重要。无线电蜂窝系统是基于频率分配的。在这种情况下,频率分配原则在于选择最佳频率计划,以满足业务需求约束和通信质量,同时最大限度地减少无线电干扰。本文提出了一种基于遗传算法的最优频率分配方法,以最小化同信道和邻信道干扰。我们在GSM网络中所做的工作结果证实了这种新方法的有效性。事实上,我们使用了OMC-R获得的文件,该文件定义了每个小区的相邻小区以及分配给所考虑区域的频率。所获得的结果清楚地表明了所使用的方法的有效性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency Plan Optimization Based on Genetic Algorithms for Cellular Networks
Cellular networks are constantly evolving to ensure a better Quality of Service (QoS) and quality of coverage ever more important. The radio cellular systems are based on frequency allocation. In this context, frequency allocation principle consists in choosing an optimal frequency plan to meet traffic demand constraints and communication quality while minimizing the radio interferences. This paper proposes an optimal frequency allocation approach based on genetic algorithms to minimize co-channel and adjacent channel interference. The validation of this new approach is confirmed by the results of the work we have done in the GSM network. In fact, we used the file obtained by the OMC-R, which defines the adjacent cells of each cell and the frequencies allocated to the considered area. The results obtained clearly show the effectiveness and robustness of the approach used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Communications Software and Systems
Journal of Communications Software and Systems Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
14.30%
发文量
28
审稿时长
8 weeks
期刊最新文献
Assessment of Transmitted Power Density in the Planar Multilayer Tissue Model due to Radiation from Dipole Antenna Signature-based Tree for Finding Frequent Itemsets Friendy: A Deep Learning based Framework for Assisting in Young Autistic Children Psychotherapy Interventions Ensemble of Local Texture Descriptor for Accurate Breast Cancer Detection from Histopathologic Images Comparison of Similarity Measures for Trajectory Clustering - Aviation Use Case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1