{"title":"假单胞菌蛋白Pf-5在硝基吡啶生物合成途径中黄素依赖卤化酶prnc的表达及特性研究","authors":"Jan Gebauer, J. Pietruszka, T. Classen","doi":"10.3389/fctls.2023.1231765","DOIUrl":null,"url":null,"abstract":"Introduction: The antimicrobial pyrrolnitrin from Pseudomonas strains is formed in four steps from tryptophan and comprises two flavin-dependent halogenases. Both PrnC and PrnA can carry out regioselective chlorination and bromination and are carrier protein-independent. Whilst the tryptophan halogenase PrnA has been studied in detail in the past, this study focuses on the pyrrole halogenating enzyme PrnC.Methods: The halogenating enzyme PrnC, as well as the essential electron suppliers, the flavin reductases, have been produced soluble in E. coli. Furthermore, a screening of a rational compound library revealed that the pyrrole is essential for substrate recognition; however, the substitution pattern of the benzene ring is not limiting the catalysis.Results and discussion: This renders PrnC to be a synthetically valuable enzyme for the synthesis of pyrrolnitrin congeners. For its natural substrate monodechloroaminopyrrolnitrin (MDA), the KM value was determined as 14.4 ± 1.2 µM and a kcat of 1.66 ± 0.02 min−1, which is comparable to other halogenases.","PeriodicalId":73071,"journal":{"name":"Frontiers in catalysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression and characterization of PrnC—a flavin-dependent halogenase from the pyrrolnitrin biosynthetic pathway of Pseudomonas protegens Pf-5\",\"authors\":\"Jan Gebauer, J. Pietruszka, T. Classen\",\"doi\":\"10.3389/fctls.2023.1231765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The antimicrobial pyrrolnitrin from Pseudomonas strains is formed in four steps from tryptophan and comprises two flavin-dependent halogenases. Both PrnC and PrnA can carry out regioselective chlorination and bromination and are carrier protein-independent. Whilst the tryptophan halogenase PrnA has been studied in detail in the past, this study focuses on the pyrrole halogenating enzyme PrnC.Methods: The halogenating enzyme PrnC, as well as the essential electron suppliers, the flavin reductases, have been produced soluble in E. coli. Furthermore, a screening of a rational compound library revealed that the pyrrole is essential for substrate recognition; however, the substitution pattern of the benzene ring is not limiting the catalysis.Results and discussion: This renders PrnC to be a synthetically valuable enzyme for the synthesis of pyrrolnitrin congeners. For its natural substrate monodechloroaminopyrrolnitrin (MDA), the KM value was determined as 14.4 ± 1.2 µM and a kcat of 1.66 ± 0.02 min−1, which is comparable to other halogenases.\",\"PeriodicalId\":73071,\"journal\":{\"name\":\"Frontiers in catalysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fctls.2023.1231765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fctls.2023.1231765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Expression and characterization of PrnC—a flavin-dependent halogenase from the pyrrolnitrin biosynthetic pathway of Pseudomonas protegens Pf-5
Introduction: The antimicrobial pyrrolnitrin from Pseudomonas strains is formed in four steps from tryptophan and comprises two flavin-dependent halogenases. Both PrnC and PrnA can carry out regioselective chlorination and bromination and are carrier protein-independent. Whilst the tryptophan halogenase PrnA has been studied in detail in the past, this study focuses on the pyrrole halogenating enzyme PrnC.Methods: The halogenating enzyme PrnC, as well as the essential electron suppliers, the flavin reductases, have been produced soluble in E. coli. Furthermore, a screening of a rational compound library revealed that the pyrrole is essential for substrate recognition; however, the substitution pattern of the benzene ring is not limiting the catalysis.Results and discussion: This renders PrnC to be a synthetically valuable enzyme for the synthesis of pyrrolnitrin congeners. For its natural substrate monodechloroaminopyrrolnitrin (MDA), the KM value was determined as 14.4 ± 1.2 µM and a kcat of 1.66 ± 0.02 min−1, which is comparable to other halogenases.