LSTM与相位LSTM在步态预测中的比较研究

Qili Chen, Bofan Liang, Jiuhe Wang
{"title":"LSTM与相位LSTM在步态预测中的比较研究","authors":"Qili Chen, Bofan Liang, Jiuhe Wang","doi":"10.5121/IJAIA.2019.10405","DOIUrl":null,"url":null,"abstract":"With an aging population that continues to grow, the protection and assistance of the older persons has become a very important issue. Fallsare the main safety problems of the elderly people, so it is very important to predict the falls. In this paper, a gait prediction method is proposed based on two kinds of LSTM. Firstly, the lumbar posture of the human body is measured by the acceleration gyroscope as the gait feature, and then the gait is predicted by the LSTM network. The experimental results show that the RMSE between the gait trend predicted by the method and the actual gait trend can be reached a level of 0.06 ± 0.01. And the Phased LSTM has a shorter training time. The proposed method can predict the gait trend well.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/IJAIA.2019.10405","citationCount":"8","resultStr":"{\"title\":\"A Comparative Study of LSTM and Phased LSTM for Gait Prediction\",\"authors\":\"Qili Chen, Bofan Liang, Jiuhe Wang\",\"doi\":\"10.5121/IJAIA.2019.10405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With an aging population that continues to grow, the protection and assistance of the older persons has become a very important issue. Fallsare the main safety problems of the elderly people, so it is very important to predict the falls. In this paper, a gait prediction method is proposed based on two kinds of LSTM. Firstly, the lumbar posture of the human body is measured by the acceleration gyroscope as the gait feature, and then the gait is predicted by the LSTM network. The experimental results show that the RMSE between the gait trend predicted by the method and the actual gait trend can be reached a level of 0.06 ± 0.01. And the Phased LSTM has a shorter training time. The proposed method can predict the gait trend well.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5121/IJAIA.2019.10405\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJAIA.2019.10405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2019.10405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

随着人口老龄化的持续增长,保护和援助老年人已成为一个非常重要的问题。跌倒是老年人的主要安全问题,因此预测跌倒情况非常重要。本文提出了一种基于两种LSTM的步态预测方法。首先,通过加速度陀螺仪测量人体的腰部姿态作为步态特征,然后通过LSTM网络预测步态。实验结果表明,该方法预测的步态趋势与实际步态趋势之间的RMSE可以达到0.06±0.01的水平。并且分阶段LSTM的训练时间更短。该方法能够很好地预测步态的变化趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study of LSTM and Phased LSTM for Gait Prediction
With an aging population that continues to grow, the protection and assistance of the older persons has become a very important issue. Fallsare the main safety problems of the elderly people, so it is very important to predict the falls. In this paper, a gait prediction method is proposed based on two kinds of LSTM. Firstly, the lumbar posture of the human body is measured by the acceleration gyroscope as the gait feature, and then the gait is predicted by the LSTM network. The experimental results show that the RMSE between the gait trend predicted by the method and the actual gait trend can be reached a level of 0.06 ± 0.01. And the Phased LSTM has a shorter training time. The proposed method can predict the gait trend well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1