{"title":"基于子集模拟方法的条形地基概率分析及两黏土层空间变异性的影响","authors":"Jawad K. Thajeel, Amell Jabbar Thahab","doi":"10.2478/cee-2022-0064","DOIUrl":null,"url":null,"abstract":"Abstract This article studies the probabilistic analysis at the ultimate limit state (ULS) of a strip footing resting on a purely cohesive soil composed of two layers with spatial variability of the upper or lower layer and treats the simultaneous effect of the variability of the two layers on the probability of failure Pf value using the subset simulation approach. The results are examined by comparing the Pf values obtained with the Pf value corresponding to the reference case of two homogenous clay layers. In general, the subset simulation approach is used in cases of uncertain parameters modeled by random variables. But in this paper, it is employed with uncertain parameters modeled by random fields because the spatial variability of soil properties strongly affects the behavior of geotechnical structures and causes a significant change in the variability of their responses. The soil cohesion parameter is modelled as a non-Gaussian (log-normal) anisotropic random field using a square exponential autocorrelation function by the optimal linear expansion estimation (EOLE) and the deterministic model is based on numerical simulations using the finite difference software FLAC3D.","PeriodicalId":42034,"journal":{"name":"Civil and Environmental Engineering","volume":"18 1","pages":"695 - 706"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Analysis of Strip Footings Using the Subset Simulation Approach and the Influence of Spatial Variability of Two Clay Layers\",\"authors\":\"Jawad K. Thajeel, Amell Jabbar Thahab\",\"doi\":\"10.2478/cee-2022-0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article studies the probabilistic analysis at the ultimate limit state (ULS) of a strip footing resting on a purely cohesive soil composed of two layers with spatial variability of the upper or lower layer and treats the simultaneous effect of the variability of the two layers on the probability of failure Pf value using the subset simulation approach. The results are examined by comparing the Pf values obtained with the Pf value corresponding to the reference case of two homogenous clay layers. In general, the subset simulation approach is used in cases of uncertain parameters modeled by random variables. But in this paper, it is employed with uncertain parameters modeled by random fields because the spatial variability of soil properties strongly affects the behavior of geotechnical structures and causes a significant change in the variability of their responses. The soil cohesion parameter is modelled as a non-Gaussian (log-normal) anisotropic random field using a square exponential autocorrelation function by the optimal linear expansion estimation (EOLE) and the deterministic model is based on numerical simulations using the finite difference software FLAC3D.\",\"PeriodicalId\":42034,\"journal\":{\"name\":\"Civil and Environmental Engineering\",\"volume\":\"18 1\",\"pages\":\"695 - 706\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cee-2022-0064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cee-2022-0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Probabilistic Analysis of Strip Footings Using the Subset Simulation Approach and the Influence of Spatial Variability of Two Clay Layers
Abstract This article studies the probabilistic analysis at the ultimate limit state (ULS) of a strip footing resting on a purely cohesive soil composed of two layers with spatial variability of the upper or lower layer and treats the simultaneous effect of the variability of the two layers on the probability of failure Pf value using the subset simulation approach. The results are examined by comparing the Pf values obtained with the Pf value corresponding to the reference case of two homogenous clay layers. In general, the subset simulation approach is used in cases of uncertain parameters modeled by random variables. But in this paper, it is employed with uncertain parameters modeled by random fields because the spatial variability of soil properties strongly affects the behavior of geotechnical structures and causes a significant change in the variability of their responses. The soil cohesion parameter is modelled as a non-Gaussian (log-normal) anisotropic random field using a square exponential autocorrelation function by the optimal linear expansion estimation (EOLE) and the deterministic model is based on numerical simulations using the finite difference software FLAC3D.