非设计条件下旋翼叶栅评估:平台冷却的气动研究

IF 1.3 Q2 ENGINEERING, AEROSPACE International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-07-22 DOI:10.3390/ijtpp8030023
H. Abdeh, G. Barigozzi, N. Franchina
{"title":"非设计条件下旋翼叶栅评估:平台冷却的气动研究","authors":"H. Abdeh, G. Barigozzi, N. Franchina","doi":"10.3390/ijtpp8030023","DOIUrl":null,"url":null,"abstract":"Off-design condition of a rotor blade cascade with and without platform cooling was experimentally investigated. The ability of the gas turbine to operate down to 50% to 20% of its nominal intake air flow rate has an important consequence in the change in the inlet incidence angle, which varied from nominal to −20°. Platform cooling through an upstream slot simulating the stator-to-rotor interface gap was considered. The impact of rotation on purge flow injection was simulated by installing fins inside the slot to give the coolant flow a tangential direction. Aerodynamic measurements to quantify the cascade aerodynamic loss and secondary flow structures were performed at Ma2is = 0.55, varying the coolant to main flow mass flow ratio (MFR%) and the incidence angle. The results show that losses strongly increase with MFR. A negative incidence allows a reduction in the overall loss even when coolant is injected with a high MFR. The more negative the incidence, the greater the loss reduction.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotor Cascade Assessment at Off-Design Condition: An Aerodynamic Investigation on Platform Cooling\",\"authors\":\"H. Abdeh, G. Barigozzi, N. Franchina\",\"doi\":\"10.3390/ijtpp8030023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Off-design condition of a rotor blade cascade with and without platform cooling was experimentally investigated. The ability of the gas turbine to operate down to 50% to 20% of its nominal intake air flow rate has an important consequence in the change in the inlet incidence angle, which varied from nominal to −20°. Platform cooling through an upstream slot simulating the stator-to-rotor interface gap was considered. The impact of rotation on purge flow injection was simulated by installing fins inside the slot to give the coolant flow a tangential direction. Aerodynamic measurements to quantify the cascade aerodynamic loss and secondary flow structures were performed at Ma2is = 0.55, varying the coolant to main flow mass flow ratio (MFR%) and the incidence angle. The results show that losses strongly increase with MFR. A negative incidence allows a reduction in the overall loss even when coolant is injected with a high MFR. The more negative the incidence, the greater the loss reduction.\",\"PeriodicalId\":36626,\"journal\":{\"name\":\"International Journal of Turbomachinery, Propulsion and Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbomachinery, Propulsion and Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ijtpp8030023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbomachinery, Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijtpp8030023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

对带和不带平台冷却的转子叶片叶栅的非设计工况进行了实验研究。燃气轮机在低至其标称进气流量的50%至20%的情况下运行的能力对进气入射角的变化具有重要影响,进气入射角在标称至−20°之间变化。考虑通过模拟定子-转子界面间隙的上游槽进行平台冷却。通过在槽内安装散热片以使冷却液流具有切向方向,模拟了旋转对吹扫流喷射的影响。在Ma2is=0.55时进行了气动测量,以量化叶栅气动损失和二次流结构,改变了冷却剂与主流的质量流量比(MFR%)和入射角。结果表明,随着MFR的增加,损耗显著增加。即使在以高MFR注入冷却剂时,负入射角也允许减少总损失。发病率越负,损失减少越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rotor Cascade Assessment at Off-Design Condition: An Aerodynamic Investigation on Platform Cooling
Off-design condition of a rotor blade cascade with and without platform cooling was experimentally investigated. The ability of the gas turbine to operate down to 50% to 20% of its nominal intake air flow rate has an important consequence in the change in the inlet incidence angle, which varied from nominal to −20°. Platform cooling through an upstream slot simulating the stator-to-rotor interface gap was considered. The impact of rotation on purge flow injection was simulated by installing fins inside the slot to give the coolant flow a tangential direction. Aerodynamic measurements to quantify the cascade aerodynamic loss and secondary flow structures were performed at Ma2is = 0.55, varying the coolant to main flow mass flow ratio (MFR%) and the incidence angle. The results show that losses strongly increase with MFR. A negative incidence allows a reduction in the overall loss even when coolant is injected with a high MFR. The more negative the incidence, the greater the loss reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
21.40%
发文量
29
审稿时长
11 weeks
期刊最新文献
Turbofan Performance Estimation Using Neural Network Component Maps and Genetic Algorithm-Least Squares Solvers Experimental Investigation of an Efficient and Lightweight Designed Counter-Rotating Shrouded Fan Stage Experimental Investigation of the Sensitivity of Forced Response to Cold Streaks in an Axial Turbine Heat Load Development and Heat Map Sensitivity Analysis for Civil Aero-Engines Numerical Investigation of Forced Response in a Transonic Compressor Stage—Highlighting Challenges Using Experimental Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1