使用SGD在网络上进行Nyström近似的分散学习

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Applied and Computational Harmonic Analysis Pub Date : 2023-09-01 DOI:10.1016/j.acha.2023.06.005
Heng Lian , Jiamin Liu
{"title":"使用SGD在网络上进行Nyström近似的分散学习","authors":"Heng Lian ,&nbsp;Jiamin Liu","doi":"10.1016/j.acha.2023.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays we often meet with a learning problem when data are distributed on different machines connected via a network, instead of stored centrally. Here we consider decentralized supervised learning in a reproducing kernel Hilbert space<span>. We note that standard gradient descent in a reproducing kernel Hilbert space is difficult to implement with multiple communications between worker machines. On the other hand, the Nyström approximation using gradient descent is more suited for the decentralized setting since only a small number of data points need to be shared at the beginning of the algorithm. In the setting of decentralized distributed learning in a reproducing kernel Hilbert space, we establish the optimal learning rate of stochastic gradient descent based on mini-batches, allowing multiple passes over the data set. The proposal provides a scalable approach to nonparametric estimation combining gradient method, distributed estimation, and random projection.</span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"66 ","pages":"Pages 373-387"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized learning over a network with Nyström approximation using SGD\",\"authors\":\"Heng Lian ,&nbsp;Jiamin Liu\",\"doi\":\"10.1016/j.acha.2023.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nowadays we often meet with a learning problem when data are distributed on different machines connected via a network, instead of stored centrally. Here we consider decentralized supervised learning in a reproducing kernel Hilbert space<span>. We note that standard gradient descent in a reproducing kernel Hilbert space is difficult to implement with multiple communications between worker machines. On the other hand, the Nyström approximation using gradient descent is more suited for the decentralized setting since only a small number of data points need to be shared at the beginning of the algorithm. In the setting of decentralized distributed learning in a reproducing kernel Hilbert space, we establish the optimal learning rate of stochastic gradient descent based on mini-batches, allowing multiple passes over the data set. The proposal provides a scalable approach to nonparametric estimation combining gradient method, distributed estimation, and random projection.</span></p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"66 \",\"pages\":\"Pages 373-387\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520323000490\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000490","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

如今,当数据分布在通过网络连接的不同机器上,而不是集中存储时,我们经常遇到一个学习问题。这里我们考虑在复制核希尔伯特空间中的分散监督学习。我们注意到在重现核希尔伯特空间中的标准梯度下降很难在工作机器之间的多个通信中实现。另一方面,使用梯度下降的Nyström近似更适合分散设置,因为在算法开始时只需要共享少量数据点。在复制核希尔伯特空间的分散分布式学习设置中,我们建立了基于小批量的随机梯度下降的最优学习率,允许多次遍历数据集。提出了一种结合梯度法、分布估计和随机投影的可扩展非参数估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decentralized learning over a network with Nyström approximation using SGD

Nowadays we often meet with a learning problem when data are distributed on different machines connected via a network, instead of stored centrally. Here we consider decentralized supervised learning in a reproducing kernel Hilbert space. We note that standard gradient descent in a reproducing kernel Hilbert space is difficult to implement with multiple communications between worker machines. On the other hand, the Nyström approximation using gradient descent is more suited for the decentralized setting since only a small number of data points need to be shared at the beginning of the algorithm. In the setting of decentralized distributed learning in a reproducing kernel Hilbert space, we establish the optimal learning rate of stochastic gradient descent based on mini-batches, allowing multiple passes over the data set. The proposal provides a scalable approach to nonparametric estimation combining gradient method, distributed estimation, and random projection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
期刊最新文献
On quadrature for singular integral operators with complex symmetric quadratic forms Gaussian approximation for the moving averaged modulus wavelet transform and its variants Naimark-spatial families of equichordal tight fusion frames Generalization error guaranteed auto-encoder-based nonlinear model reduction for operator learning Unlimited sampling beyond modulo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1