高级氧化法降解红番茄(Solanum lycopersicum)中吡虫啉残留及分光光度计和高效液相色谱分析

Safni Safni, Hazanita Jumiaty, H. Aziz
{"title":"高级氧化法降解红番茄(Solanum lycopersicum)中吡虫啉残留及分光光度计和高效液相色谱分析","authors":"Safni Safni, Hazanita Jumiaty, H. Aziz","doi":"10.15408/jkv.v7i2.21630","DOIUrl":null,"url":null,"abstract":"The insecticide imidacloprid (C9H10ClN5O2) common used by farmers to control pests on red tomato plants, is a dangerous substance classified as a Class II toxic. The imidacloprid residue in red tomatoes enters the body, it will lead to health problems. The purpose of this study was to determine the percentage of imidacloprid residue that can be degraded using the Advanced Oxidation Processes (AOPs) method, which includes sonolysis, sonozolysis, ozonolysis, ozone water, and the effect of various parameters. Processing time, water volume, and red tomato mass were the test parameters studied. The change in imidacloprid residue concentration during the degradation process was measured using a UV/Vis spectrophotometer (double beam) with a wavelength of 200-400 nm and HPLC with mobile phase composition used was acetonitrile/water (65:35 v/v). With a processing time of 10 minutes, the imidacloprid residue in red tomatoes can be degraded 57.38% by sonozonolysis, 63.51 % by sonolysis, 85.17 % by ozonolysis, and 88.76 % by ozone water. The imidacloprid residue in 75 g of red tomatoes could be removed as much as 91.65% by treating with ozone water for 15 minutes. HPLC analysis showed that no intermediate compounds were detected in the imidacloprid residue degradation process in red tomatoes.","PeriodicalId":17786,"journal":{"name":"Jurnal Kimia Valensi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of Imidacloprid Residue on Red Tomatoes (Solanum lycopersicum) by Advanced Oxidation Processes and Analysis using Spectrophotometer and HPLC\",\"authors\":\"Safni Safni, Hazanita Jumiaty, H. Aziz\",\"doi\":\"10.15408/jkv.v7i2.21630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The insecticide imidacloprid (C9H10ClN5O2) common used by farmers to control pests on red tomato plants, is a dangerous substance classified as a Class II toxic. The imidacloprid residue in red tomatoes enters the body, it will lead to health problems. The purpose of this study was to determine the percentage of imidacloprid residue that can be degraded using the Advanced Oxidation Processes (AOPs) method, which includes sonolysis, sonozolysis, ozonolysis, ozone water, and the effect of various parameters. Processing time, water volume, and red tomato mass were the test parameters studied. The change in imidacloprid residue concentration during the degradation process was measured using a UV/Vis spectrophotometer (double beam) with a wavelength of 200-400 nm and HPLC with mobile phase composition used was acetonitrile/water (65:35 v/v). With a processing time of 10 minutes, the imidacloprid residue in red tomatoes can be degraded 57.38% by sonozonolysis, 63.51 % by sonolysis, 85.17 % by ozonolysis, and 88.76 % by ozone water. The imidacloprid residue in 75 g of red tomatoes could be removed as much as 91.65% by treating with ozone water for 15 minutes. HPLC analysis showed that no intermediate compounds were detected in the imidacloprid residue degradation process in red tomatoes.\",\"PeriodicalId\":17786,\"journal\":{\"name\":\"Jurnal Kimia Valensi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kimia Valensi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15408/jkv.v7i2.21630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kimia Valensi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15408/jkv.v7i2.21630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

农民常用吡虫啉(C9H10ClN5O2)来控制红番茄上的害虫,这是一种被列为II类有毒物质的危险物质。红番茄中的吡虫啉残留进入人体后,会导致健康问题。本研究的目的是确定先进氧化工艺(AOPs)对吡虫啉残留量的降解率,包括声溶法、声溶法、臭氧法、臭氧水法,以及各种参数的影响。研究了处理时间、水量、红番茄质量等试验参数。采用双光束紫外分光光度计(波长200-400 nm),高效液相色谱(HPLC),流动相为乙腈/水(65:35 v/v),测定吡虫啉降解过程中残留浓度的变化。处理时间为10 min的红番茄中吡虫啉的超声波降解率为57.38%,超声波降解率为63.51%,臭氧降解率为85.17%,臭氧水降解率为88.76%。75 g红番茄经臭氧水处理15 min,吡虫啉残留量可达91.65%。高效液相色谱分析表明,红番茄中吡虫啉残留降解过程中未检出中间化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Degradation of Imidacloprid Residue on Red Tomatoes (Solanum lycopersicum) by Advanced Oxidation Processes and Analysis using Spectrophotometer and HPLC
The insecticide imidacloprid (C9H10ClN5O2) common used by farmers to control pests on red tomato plants, is a dangerous substance classified as a Class II toxic. The imidacloprid residue in red tomatoes enters the body, it will lead to health problems. The purpose of this study was to determine the percentage of imidacloprid residue that can be degraded using the Advanced Oxidation Processes (AOPs) method, which includes sonolysis, sonozolysis, ozonolysis, ozone water, and the effect of various parameters. Processing time, water volume, and red tomato mass were the test parameters studied. The change in imidacloprid residue concentration during the degradation process was measured using a UV/Vis spectrophotometer (double beam) with a wavelength of 200-400 nm and HPLC with mobile phase composition used was acetonitrile/water (65:35 v/v). With a processing time of 10 minutes, the imidacloprid residue in red tomatoes can be degraded 57.38% by sonozonolysis, 63.51 % by sonolysis, 85.17 % by ozonolysis, and 88.76 % by ozone water. The imidacloprid residue in 75 g of red tomatoes could be removed as much as 91.65% by treating with ozone water for 15 minutes. HPLC analysis showed that no intermediate compounds were detected in the imidacloprid residue degradation process in red tomatoes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
15
审稿时长
24 weeks
期刊最新文献
The Potential Effect of Honey-derived D-Allulose in Counteracting Hyperglycemia by Time and Dose Dependent Manner in Diabetes Mellitus Synthesis and Cytotoxic Evaluation of 3-Dimethyl Carbamoyl Emodin Green Metrics Evaluation on The Cannizzaro Reaction of p-Anisaldehyde and Benzaldehyde Under Solvent-Free Conditions Exploration The Candidates of Xenobiotic Degrading Indigenous Bacteria from Probolinggo City Landfill by Using Next Generation Sequencing (NGS) Sesquiterpenoids from the stem bark of Aglaia pachyphylla Miq (Meliaceae) and cytotoxic activity against MCF-7 Cancer Cell Line
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1