含缺失的IRT模型下潜在性状估计的注解

IF 1.4 4区 心理学 Q3 PSYCHOLOGY, APPLIED Journal of Educational Measurement Pub Date : 2023-04-26 DOI:10.1111/jedm.12365
Jinxin Guo, Xin Xu, Tao Xin
{"title":"含缺失的IRT模型下潜在性状估计的注解","authors":"Jinxin Guo,&nbsp;Xin Xu,&nbsp;Tao Xin","doi":"10.1111/jedm.12365","DOIUrl":null,"url":null,"abstract":"<p>Missingness due to not-reached items and omitted items has received much attention in the recent psychometric literature. Such missingness, if not handled properly, would lead to biased parameter estimation, as well as inaccurate inference of examinees, and further erode the validity of the test. This paper reviews some commonly used IRT based models allowing missingness, followed by three popular examinee scoring methods, including maximum likelihood estimation, maximum a posteriori, and expected a posteriori. Simulation studies were conducted to compare these examinee scoring methods across these commonly used models in the presence of missingness. Results showed that all the methods could infer examinees' ability accurately when the missingness is ignorable. If the missingness is nonignorable, incorporating those missing responses would improve the precision in estimating abilities for examinees with missingness, especially when the test length is short. In terms of examinee scoring methods, expected a posteriori method performed better for evaluating latent traits under models allowing missingness. An empirical study based on the PISA 2015 Science Test was further performed.</p>","PeriodicalId":47871,"journal":{"name":"Journal of Educational Measurement","volume":"60 4","pages":"575-625"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Latent Traits Estimates under IRT Models with Missingness\",\"authors\":\"Jinxin Guo,&nbsp;Xin Xu,&nbsp;Tao Xin\",\"doi\":\"10.1111/jedm.12365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Missingness due to not-reached items and omitted items has received much attention in the recent psychometric literature. Such missingness, if not handled properly, would lead to biased parameter estimation, as well as inaccurate inference of examinees, and further erode the validity of the test. This paper reviews some commonly used IRT based models allowing missingness, followed by three popular examinee scoring methods, including maximum likelihood estimation, maximum a posteriori, and expected a posteriori. Simulation studies were conducted to compare these examinee scoring methods across these commonly used models in the presence of missingness. Results showed that all the methods could infer examinees' ability accurately when the missingness is ignorable. If the missingness is nonignorable, incorporating those missing responses would improve the precision in estimating abilities for examinees with missingness, especially when the test length is short. In terms of examinee scoring methods, expected a posteriori method performed better for evaluating latent traits under models allowing missingness. An empirical study based on the PISA 2015 Science Test was further performed.</p>\",\"PeriodicalId\":47871,\"journal\":{\"name\":\"Journal of Educational Measurement\",\"volume\":\"60 4\",\"pages\":\"575-625\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12365\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PSYCHOLOGY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Measurement","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12365","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在最近的心理测量学文献中,由于未到达项目和遗漏项目而导致的缺失受到了广泛的关注。这种缺失如果处理不当,会导致参数估计偏倚,导致考生推理不准确,进一步削弱考试的效度。本文综述了一些常用的基于IRT的遗漏模型,然后介绍了三种常用的考生评分方法,包括最大似然估计、最大后验和期望后验。模拟研究进行比较这些考生评分方法在这些常用的模型在缺失的存在。结果表明,在缺失可忽略的情况下,所有方法都能准确地推断出考生的能力。如果缺失是不可忽略的,将这些缺失的回答合并将提高对缺失考生能力的估计精度,特别是当考试长度较短时。在考生评分方法方面,在允许缺失的模型下,期望后验方法能更好地评价潜在特征。基于2015年PISA科学测试,进一步进行实证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Note on Latent Traits Estimates under IRT Models with Missingness

Missingness due to not-reached items and omitted items has received much attention in the recent psychometric literature. Such missingness, if not handled properly, would lead to biased parameter estimation, as well as inaccurate inference of examinees, and further erode the validity of the test. This paper reviews some commonly used IRT based models allowing missingness, followed by three popular examinee scoring methods, including maximum likelihood estimation, maximum a posteriori, and expected a posteriori. Simulation studies were conducted to compare these examinee scoring methods across these commonly used models in the presence of missingness. Results showed that all the methods could infer examinees' ability accurately when the missingness is ignorable. If the missingness is nonignorable, incorporating those missing responses would improve the precision in estimating abilities for examinees with missingness, especially when the test length is short. In terms of examinee scoring methods, expected a posteriori method performed better for evaluating latent traits under models allowing missingness. An empirical study based on the PISA 2015 Science Test was further performed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
46
期刊介绍: The Journal of Educational Measurement (JEM) publishes original measurement research, provides reviews of measurement publications, and reports on innovative measurement applications. The topics addressed will interest those concerned with the practice of measurement in field settings, as well as be of interest to measurement theorists. In addition to presenting new contributions to measurement theory and practice, JEM also serves as a vehicle for improving educational measurement applications in a variety of settings.
期刊最新文献
Sequential Reservoir Computing for Log File‐Based Behavior Process Data Analyses Issue Information Exploring Latent Constructs through Multimodal Data Analysis Robustness of Item Response Theory Models under the PISA Multistage Adaptive Testing Designs Modeling Nonlinear Effects of Person‐by‐Item Covariates in Explanatory Item Response Models: Exploratory Plots and Modeling Using Smooth Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1