{"title":"稀土和钇在方解石中的掺入:一个关键性的再评价","authors":"Peter Möller, Marco De Lucia","doi":"10.1007/s10498-020-09369-9","DOIUrl":null,"url":null,"abstract":"<p>The reported partition coefficients of REE with calcite are reviewed and critically discussed. In some of the reported experimental sets, REE concentrations are found to be supersaturated with respect to individual REE<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> but never to REE(OH)<sub>3</sub>. Although the solutions are unsaturated with respect to individual REY carbonates, REY including Y are incorporated in calcite surfaces, where they are overgrown by calcite. Charge balances may be obtained by building {REY–Na-(CO<sub>3</sub>)<sub>2</sub>}<sub><i>n</i></sub> or by exchange of 2Ca<sup>2+</sup> against REY<sup>3+</sup>?+?blank space calcite lattice. These surface compounds may either be homogeneously distributed or clustered. Both the size and frequency of clusters increase with [REY]/[Ca] or [ΣREY<sup>3+</sup>]/[Ca<sup>2+</sup>] in solution. If these surface precipitates are removed into solutions saturated with respect to ΣREE<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>, they start growing in the aqueous phase. In this case, the apparent <i>D</i><sub>REY</sub> and <i>k</i><sub>REY</sub> values decrease with increasing REY concentrations in solution. In previous studies, only the individual distribution coefficients are reported not considering that the entirety of REY determines their behavior in partitioning. Given enough time, these surface clusters equilibrate with the aqueous phase before being overgrown by calcite. In the double logarithmic plots of {REY}/{Ca} versus [REY]/[Ca] or [REY<sup>3+</sup>]/[Ca<sup>2+</sup>], two relationships evolve characterizing the REY distribution in marine calcite and experimental calcites grown in Mg<sup>2+</sup>-free solutions. The double logarithmic plots of partition coefficients of REY<span><sup>3+</sup><sub><i>i</i></sub></span> in calcite grown from seawater show a slope exceeding unity, whereas those from fluids without Mg<sup>2+</sup> depict slopes less than unity being both in contrast to the Henderson–Kracek rule.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"26 2","pages":"89 - 117"},"PeriodicalIF":1.7000,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09369-9","citationCount":"7","resultStr":"{\"title\":\"Incorporation of Rare Earths and Yttrium in Calcite: A Critical Re-evaluation\",\"authors\":\"Peter Möller, Marco De Lucia\",\"doi\":\"10.1007/s10498-020-09369-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The reported partition coefficients of REE with calcite are reviewed and critically discussed. In some of the reported experimental sets, REE concentrations are found to be supersaturated with respect to individual REE<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> but never to REE(OH)<sub>3</sub>. Although the solutions are unsaturated with respect to individual REY carbonates, REY including Y are incorporated in calcite surfaces, where they are overgrown by calcite. Charge balances may be obtained by building {REY–Na-(CO<sub>3</sub>)<sub>2</sub>}<sub><i>n</i></sub> or by exchange of 2Ca<sup>2+</sup> against REY<sup>3+</sup>?+?blank space calcite lattice. These surface compounds may either be homogeneously distributed or clustered. Both the size and frequency of clusters increase with [REY]/[Ca] or [ΣREY<sup>3+</sup>]/[Ca<sup>2+</sup>] in solution. If these surface precipitates are removed into solutions saturated with respect to ΣREE<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>, they start growing in the aqueous phase. In this case, the apparent <i>D</i><sub>REY</sub> and <i>k</i><sub>REY</sub> values decrease with increasing REY concentrations in solution. In previous studies, only the individual distribution coefficients are reported not considering that the entirety of REY determines their behavior in partitioning. Given enough time, these surface clusters equilibrate with the aqueous phase before being overgrown by calcite. In the double logarithmic plots of {REY}/{Ca} versus [REY]/[Ca] or [REY<sup>3+</sup>]/[Ca<sup>2+</sup>], two relationships evolve characterizing the REY distribution in marine calcite and experimental calcites grown in Mg<sup>2+</sup>-free solutions. The double logarithmic plots of partition coefficients of REY<span><sup>3+</sup><sub><i>i</i></sub></span> in calcite grown from seawater show a slope exceeding unity, whereas those from fluids without Mg<sup>2+</sup> depict slopes less than unity being both in contrast to the Henderson–Kracek rule.</p>\",\"PeriodicalId\":8102,\"journal\":{\"name\":\"Aquatic Geochemistry\",\"volume\":\"26 2\",\"pages\":\"89 - 117\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10498-020-09369-9\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10498-020-09369-9\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-020-09369-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Incorporation of Rare Earths and Yttrium in Calcite: A Critical Re-evaluation
The reported partition coefficients of REE with calcite are reviewed and critically discussed. In some of the reported experimental sets, REE concentrations are found to be supersaturated with respect to individual REE2(CO3)3 but never to REE(OH)3. Although the solutions are unsaturated with respect to individual REY carbonates, REY including Y are incorporated in calcite surfaces, where they are overgrown by calcite. Charge balances may be obtained by building {REY–Na-(CO3)2}n or by exchange of 2Ca2+ against REY3+?+?blank space calcite lattice. These surface compounds may either be homogeneously distributed or clustered. Both the size and frequency of clusters increase with [REY]/[Ca] or [ΣREY3+]/[Ca2+] in solution. If these surface precipitates are removed into solutions saturated with respect to ΣREE2(CO3)3, they start growing in the aqueous phase. In this case, the apparent DREY and kREY values decrease with increasing REY concentrations in solution. In previous studies, only the individual distribution coefficients are reported not considering that the entirety of REY determines their behavior in partitioning. Given enough time, these surface clusters equilibrate with the aqueous phase before being overgrown by calcite. In the double logarithmic plots of {REY}/{Ca} versus [REY]/[Ca] or [REY3+]/[Ca2+], two relationships evolve characterizing the REY distribution in marine calcite and experimental calcites grown in Mg2+-free solutions. The double logarithmic plots of partition coefficients of REY3+i in calcite grown from seawater show a slope exceeding unity, whereas those from fluids without Mg2+ depict slopes less than unity being both in contrast to the Henderson–Kracek rule.
期刊介绍:
We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.