磷石膏、膨润土和红土混合土用于水力屏障的技术可行性分析

IF 1.1 Q4 ENGINEERING, GEOLOGICAL Soils and Rocks Pub Date : 2023-06-27 DOI:10.28927/sr.2023.009622
Yago Borges, Bismarck Oliveira, M. Boscov, M. Mascarenha
{"title":"磷石膏、膨润土和红土混合土用于水力屏障的技术可行性分析","authors":"Yago Borges, Bismarck Oliveira, M. Boscov, M. Mascarenha","doi":"10.28927/sr.2023.009622","DOIUrl":null,"url":null,"abstract":"Every year, millions of tons of phosphogypsum, a by-product of the fertilizer industry, are produced worldwide. As just a small part of this amount is reused, this study analyzed a new alternative to reuse this material in geotechnical works, in mixtures with lateritic soil and bentonite for the construction of liners for sanitary landfills. Four compositions were tested: 100% soil, 10% phosphogypsum + 90% soil, 10% phosphogypsum + 3% bentonite + 87% soil and 10% phosphogypsum + 6% bentonite + 84% soil. X-ray diffraction and scanning electron microscopy were used to analyze the mineralogy, while the hydromechanical performance was evaluated through compaction, hydraulic conductivity, and unconfined compressive tests. Modified free swell tests and modified Atterberg limits were used to test compatibility with NaCl, NaOH and ethanol. A solubilization test was carried out to investigate the presence of inorganic contaminants in the phosphogypsum. The addition of phosphogypsum increased the optimum water content in the compaction curves, did not change the hydraulic conductivity and decreased the unconfined compressive strength of the mixtures. The addition of bentonite increased the optimum water content, reduced the hydraulic conductivity, and increased the unconfined compressive strength. The possibility of dissolution of gypsite (main component of phosphogypsum), the problems that may arise from the interaction with chemical products, and the risk of manganese release in the subsoil lead to the conclusion that phosphogypsum is not suitable to be used in liners. However, soil-bentonite-phosphogypsum mixtures were considered eligible materials to be used in impermeable layers of other geotechnical works.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical feasibility analysis of using phosphogypsum, bentonite and lateritic soil mixtures in hydraulic barriers\",\"authors\":\"Yago Borges, Bismarck Oliveira, M. Boscov, M. Mascarenha\",\"doi\":\"10.28927/sr.2023.009622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every year, millions of tons of phosphogypsum, a by-product of the fertilizer industry, are produced worldwide. As just a small part of this amount is reused, this study analyzed a new alternative to reuse this material in geotechnical works, in mixtures with lateritic soil and bentonite for the construction of liners for sanitary landfills. Four compositions were tested: 100% soil, 10% phosphogypsum + 90% soil, 10% phosphogypsum + 3% bentonite + 87% soil and 10% phosphogypsum + 6% bentonite + 84% soil. X-ray diffraction and scanning electron microscopy were used to analyze the mineralogy, while the hydromechanical performance was evaluated through compaction, hydraulic conductivity, and unconfined compressive tests. Modified free swell tests and modified Atterberg limits were used to test compatibility with NaCl, NaOH and ethanol. A solubilization test was carried out to investigate the presence of inorganic contaminants in the phosphogypsum. The addition of phosphogypsum increased the optimum water content in the compaction curves, did not change the hydraulic conductivity and decreased the unconfined compressive strength of the mixtures. The addition of bentonite increased the optimum water content, reduced the hydraulic conductivity, and increased the unconfined compressive strength. The possibility of dissolution of gypsite (main component of phosphogypsum), the problems that may arise from the interaction with chemical products, and the risk of manganese release in the subsoil lead to the conclusion that phosphogypsum is not suitable to be used in liners. However, soil-bentonite-phosphogypsum mixtures were considered eligible materials to be used in impermeable layers of other geotechnical works.\",\"PeriodicalId\":43687,\"journal\":{\"name\":\"Soils and Rocks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Rocks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2023.009622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Rocks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2023.009622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

每年,全世界生产数百万吨磷石膏,这是化肥工业的副产品。由于其中只有一小部分被重复使用,本研究分析了在岩土工程中重复使用这种材料的一种新选择,即与红土和膨润土混合,用于建造卫生填埋场的衬垫。试验四种成分:100%土、10%磷石膏+ 90%土、10%磷石膏+ 3%膨润土+ 87%土和10%磷石膏+ 6%膨润土+ 84%土。利用x射线衍射和扫描电镜对其进行了矿物学分析,并通过压实、导水性和无侧限压缩试验对其流体力学性能进行了评价。采用改进的自由膨胀试验和改进的Atterberg极限来测试与NaCl、NaOH和乙醇的相容性。对磷石膏中无机污染物的存在进行了增溶试验。磷石膏的加入增加了压实曲线上的最佳含水量,但没有改变混合料的水力导率,降低了混合料的无侧限抗压强度。膨润土的加入提高了最佳含水量,降低了导流系数,提高了无侧限抗压强度。石膏(磷石膏的主要成分)溶解的可能性,与化学产品相互作用可能产生的问题,以及在底土中释放锰的风险,导致磷石膏不适合用于班轮。然而,土壤-膨润土-磷石膏混合物被认为是用于其他岩土工程的防渗层的合格材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Technical feasibility analysis of using phosphogypsum, bentonite and lateritic soil mixtures in hydraulic barriers
Every year, millions of tons of phosphogypsum, a by-product of the fertilizer industry, are produced worldwide. As just a small part of this amount is reused, this study analyzed a new alternative to reuse this material in geotechnical works, in mixtures with lateritic soil and bentonite for the construction of liners for sanitary landfills. Four compositions were tested: 100% soil, 10% phosphogypsum + 90% soil, 10% phosphogypsum + 3% bentonite + 87% soil and 10% phosphogypsum + 6% bentonite + 84% soil. X-ray diffraction and scanning electron microscopy were used to analyze the mineralogy, while the hydromechanical performance was evaluated through compaction, hydraulic conductivity, and unconfined compressive tests. Modified free swell tests and modified Atterberg limits were used to test compatibility with NaCl, NaOH and ethanol. A solubilization test was carried out to investigate the presence of inorganic contaminants in the phosphogypsum. The addition of phosphogypsum increased the optimum water content in the compaction curves, did not change the hydraulic conductivity and decreased the unconfined compressive strength of the mixtures. The addition of bentonite increased the optimum water content, reduced the hydraulic conductivity, and increased the unconfined compressive strength. The possibility of dissolution of gypsite (main component of phosphogypsum), the problems that may arise from the interaction with chemical products, and the risk of manganese release in the subsoil lead to the conclusion that phosphogypsum is not suitable to be used in liners. However, soil-bentonite-phosphogypsum mixtures were considered eligible materials to be used in impermeable layers of other geotechnical works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soils and Rocks
Soils and Rocks ENGINEERING, GEOLOGICAL-
CiteScore
1.00
自引率
20.00%
发文量
49
期刊介绍: Soils and Rocks publishes papers in English in the broad fields of Geotechnical Engineering, Engineering Geology and Environmental Engineering. The Journal is published in April, August and December. The journal, with the name "Solos e Rochas", was first published in 1978 by the Graduate School of Engineering-Federal University of Rio de Janeiro (COPPE-UFRJ).
期刊最新文献
Discussion of “Systematic literature review and mapping of the prediction of pile capacities” Primary consolidation settlement due to ramp loading: Terzaghi (1943) method revisited Behavior of clayey soil treated with nano magnesium oxide material Numerical modeling of the behavior of a surface foundation located in the proximity of a slope Analysis of sorption/desorption of cadmium and lead in the legal amazon soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1