{"title":"山毛榉木材在压缩和拉伸状态下力学行为的实验和数值研究","authors":"Wengang Hu, Bingrui Chen, Tianxing Zhang","doi":"10.37763/WR.1336-4561/66.1.2738","DOIUrl":null,"url":null,"abstract":"Effect of loading type (compression and tension) on mechanical properties, including elastic constants, yield strength and ultimate strength of beech (Fagus orientalis) wood were studied based on experimental and numerical methods. The mechanical behaviors of beech wood in compressive and tensile states were simulated by finite element method (FEM) using mechanical parameters measured in an experiment. The results showed that the effect of loading types on mechanical properties of beech was statistically significant. The elastic moduli measured in tension were all bigger than those in compression, but the Poisson’s ratios determined in compression were bigger than those in tension. In compressive state, the yield and ultimate strengths of beech in longitudinal grain orientation were all smaller than those measured in tensile state, while the yield and ultimate strengths of beech in radial and tangential directions were higher than those of longitudinal direction. The results of the FEM in compression and tension were all well consistent with those measured by experiments respectively, and the average errors were all within 13.69%. As a result, the finite element models proposed in this study can predict the mechanical behaviors of wood in tensile and compressive states.","PeriodicalId":23786,"journal":{"name":"Wood Research","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Experimental and numerical studies on mechanical behaviors of beech wood under compressive and tensile states\",\"authors\":\"Wengang Hu, Bingrui Chen, Tianxing Zhang\",\"doi\":\"10.37763/WR.1336-4561/66.1.2738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effect of loading type (compression and tension) on mechanical properties, including elastic constants, yield strength and ultimate strength of beech (Fagus orientalis) wood were studied based on experimental and numerical methods. The mechanical behaviors of beech wood in compressive and tensile states were simulated by finite element method (FEM) using mechanical parameters measured in an experiment. The results showed that the effect of loading types on mechanical properties of beech was statistically significant. The elastic moduli measured in tension were all bigger than those in compression, but the Poisson’s ratios determined in compression were bigger than those in tension. In compressive state, the yield and ultimate strengths of beech in longitudinal grain orientation were all smaller than those measured in tensile state, while the yield and ultimate strengths of beech in radial and tangential directions were higher than those of longitudinal direction. The results of the FEM in compression and tension were all well consistent with those measured by experiments respectively, and the average errors were all within 13.69%. As a result, the finite element models proposed in this study can predict the mechanical behaviors of wood in tensile and compressive states.\",\"PeriodicalId\":23786,\"journal\":{\"name\":\"Wood Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.37763/WR.1336-4561/66.1.2738\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37763/WR.1336-4561/66.1.2738","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Experimental and numerical studies on mechanical behaviors of beech wood under compressive and tensile states
Effect of loading type (compression and tension) on mechanical properties, including elastic constants, yield strength and ultimate strength of beech (Fagus orientalis) wood were studied based on experimental and numerical methods. The mechanical behaviors of beech wood in compressive and tensile states were simulated by finite element method (FEM) using mechanical parameters measured in an experiment. The results showed that the effect of loading types on mechanical properties of beech was statistically significant. The elastic moduli measured in tension were all bigger than those in compression, but the Poisson’s ratios determined in compression were bigger than those in tension. In compressive state, the yield and ultimate strengths of beech in longitudinal grain orientation were all smaller than those measured in tensile state, while the yield and ultimate strengths of beech in radial and tangential directions were higher than those of longitudinal direction. The results of the FEM in compression and tension were all well consistent with those measured by experiments respectively, and the average errors were all within 13.69%. As a result, the finite element models proposed in this study can predict the mechanical behaviors of wood in tensile and compressive states.
期刊介绍:
Wood Research publishes original papers aimed at recent advances in all branches of wood science (biology, chemistry, wood physics and mechanics, mechanical and chemical processing etc.). Submission of the manuscript implies that it has not been published before and it is not under consideration for publication elsewhere.