条件评估机器学习(CVML):一种评估公民为更安全、更清洁的环境付费意愿的新方法

IF 2.1 Q3 ENVIRONMENTAL SCIENCES Urban science (Basel, Switzerland) Pub Date : 2023-08-12 DOI:10.3390/urbansci7030084
Van Quy Khuc, D. Tran
{"title":"条件评估机器学习(CVML):一种评估公民为更安全、更清洁的环境付费意愿的新方法","authors":"Van Quy Khuc, D. Tran","doi":"10.3390/urbansci7030084","DOIUrl":null,"url":null,"abstract":"This paper introduces an advanced method that integrates contingent valuation and machine learning (CVML) to estimate residents’ demand for reducing or mitigating environmental pollution and climate change. To be precise, CVML is an innovative hybrid machine learning model, and it can leverage a limited amount of survey data for prediction and data enrichment purposes. The model comprises two interconnected modules: Module I, an unsupervised learning algorithm, and Module II, a supervised learning algorithm. Module I is responsible for grouping the data into groups based on common characteristics, thereby grouping the corresponding dependent variable, whereas Module II is in charge of demonstrating the ability to predict and the capacity to appropriately assign new samples to their respective categories based on input attributes. Taking a survey on the topic of air pollution in Hanoi in 2019 as an example, we found that CVML can predict households’ willingness to pay for polluted air mitigation at a high degree of accuracy (i.e., 98%). We found that CVML can help users reduce costs or save resources because it makes use of secondary data that are available on many open data sources. These findings suggest that CVML is a sound and practical method that could be widely applied in a wide range of fields, particularly in environmental economics and sustainability science. In practice, CVML could be used to support decision-makers in improving the financial resources to maintain and/or further support many environmental programs in years to come.","PeriodicalId":75284,"journal":{"name":"Urban science (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contingent Valuation Machine Learning (CVML): A Novel Method for Estimating Citizens’ Willingness to Pay for a Safer and Cleaner Environment\",\"authors\":\"Van Quy Khuc, D. Tran\",\"doi\":\"10.3390/urbansci7030084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an advanced method that integrates contingent valuation and machine learning (CVML) to estimate residents’ demand for reducing or mitigating environmental pollution and climate change. To be precise, CVML is an innovative hybrid machine learning model, and it can leverage a limited amount of survey data for prediction and data enrichment purposes. The model comprises two interconnected modules: Module I, an unsupervised learning algorithm, and Module II, a supervised learning algorithm. Module I is responsible for grouping the data into groups based on common characteristics, thereby grouping the corresponding dependent variable, whereas Module II is in charge of demonstrating the ability to predict and the capacity to appropriately assign new samples to their respective categories based on input attributes. Taking a survey on the topic of air pollution in Hanoi in 2019 as an example, we found that CVML can predict households’ willingness to pay for polluted air mitigation at a high degree of accuracy (i.e., 98%). We found that CVML can help users reduce costs or save resources because it makes use of secondary data that are available on many open data sources. These findings suggest that CVML is a sound and practical method that could be widely applied in a wide range of fields, particularly in environmental economics and sustainability science. In practice, CVML could be used to support decision-makers in improving the financial resources to maintain and/or further support many environmental programs in years to come.\",\"PeriodicalId\":75284,\"journal\":{\"name\":\"Urban science (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban science (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/urbansci7030084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban science (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/urbansci7030084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种将条件评估和机器学习(CVML)相结合的先进方法,以估计居民减少或缓解环境污染和气候变化的需求。准确地说,CVML是一种创新的混合机器学习模型,它可以利用有限的调查数据进行预测和数据丰富。该模型包括两个相互连接的模块:模块I,一个无监督学习算法,和模块II,一个有监督学习算法。模块I负责根据共同特征将数据分组,从而对相应的因变量进行分组,而模块II负责展示预测能力和根据输入属性将新样本适当分配到各自类别的能力。以2019年河内市一项关于空气污染主题的调查为例,我们发现CVML可以高度准确地预测家庭为缓解污染空气付费的意愿(即98%)。我们发现CVML可以帮助用户降低成本或节省资源,因为它利用了许多开放数据源上可用的辅助数据。这些发现表明,CVML是一种健全而实用的方法,可以广泛应用于广泛的领域,特别是在环境经济学和可持续性科学中。在实践中,CVML可用于支持决策者改善财政资源,以在未来几年维持和/或进一步支持许多环境项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contingent Valuation Machine Learning (CVML): A Novel Method for Estimating Citizens’ Willingness to Pay for a Safer and Cleaner Environment
This paper introduces an advanced method that integrates contingent valuation and machine learning (CVML) to estimate residents’ demand for reducing or mitigating environmental pollution and climate change. To be precise, CVML is an innovative hybrid machine learning model, and it can leverage a limited amount of survey data for prediction and data enrichment purposes. The model comprises two interconnected modules: Module I, an unsupervised learning algorithm, and Module II, a supervised learning algorithm. Module I is responsible for grouping the data into groups based on common characteristics, thereby grouping the corresponding dependent variable, whereas Module II is in charge of demonstrating the ability to predict and the capacity to appropriately assign new samples to their respective categories based on input attributes. Taking a survey on the topic of air pollution in Hanoi in 2019 as an example, we found that CVML can predict households’ willingness to pay for polluted air mitigation at a high degree of accuracy (i.e., 98%). We found that CVML can help users reduce costs or save resources because it makes use of secondary data that are available on many open data sources. These findings suggest that CVML is a sound and practical method that could be widely applied in a wide range of fields, particularly in environmental economics and sustainability science. In practice, CVML could be used to support decision-makers in improving the financial resources to maintain and/or further support many environmental programs in years to come.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Mapping Deprived Urban Areas Using Open Geospatial Data and Machine Learning in Africa Developing a Qualitative Urban Green Spaces Index Applied to a Mediterranean City Strengthening Resilient Built Environments through Human Social Capital: A Path to Post-COVID-19 Recovery The Impact of the COVID-19 Pandemic on the Public Transportation System of Montevideo, Uruguay: A Urban Data Analysis Approach Sociodemographic Analysis of Disability in a Highly Depopulated Rural Region: The Case of Soria, Spain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1