从多模渐变折射率光纤中的光波热化角度看空间光束自清洁

IF 7.7 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Advances in Physics: X Pub Date : 2023-04-24 DOI:10.1080/23746149.2023.2228018
M. Ferraro, F. Mangini, M. Zitelli, S. Wabnitz
{"title":"从多模渐变折射率光纤中的光波热化角度看空间光束自清洁","authors":"M. Ferraro, F. Mangini, M. Zitelli, S. Wabnitz","doi":"10.1080/23746149.2023.2228018","DOIUrl":null,"url":null,"abstract":"The input power-induced transformation of the transverse intensity profile at the output of graded-index multimode optical fibers from speckles into a bell-shaped beam sitting on a low intensity background is known as spatial beam self-cleaning. Its remarkable properties are the output beam brightness improvement and robustness to fiber bending and squeezing. These properties permit to overcome the limitations of multimode fibers in terms of low output beam quality, which is very promising for a host of technological applications. In this review, we outline recent progress in the understanding of spatial beam self-cleaning, which can be seen as a state of thermal equilibrium in the complex process of modal four-wave mixing. In other words, the associated nonlinear redistribution of the mode powers which ultimately favors the fundamental mode of the fiber can be described in the framework of statistical mechanics applied to the gas of photons populating the fiber modes. On the one hand, this description has been corroborated by a series of experiments by different groups. On the other hand, some open issues still remain, and we offer a perspective for future studies in this emerging and controversial field of research.","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On spatial beam self-cleaning from the perspective of optical wave thermalization in multimode graded-index fibers\",\"authors\":\"M. Ferraro, F. Mangini, M. Zitelli, S. Wabnitz\",\"doi\":\"10.1080/23746149.2023.2228018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The input power-induced transformation of the transverse intensity profile at the output of graded-index multimode optical fibers from speckles into a bell-shaped beam sitting on a low intensity background is known as spatial beam self-cleaning. Its remarkable properties are the output beam brightness improvement and robustness to fiber bending and squeezing. These properties permit to overcome the limitations of multimode fibers in terms of low output beam quality, which is very promising for a host of technological applications. In this review, we outline recent progress in the understanding of spatial beam self-cleaning, which can be seen as a state of thermal equilibrium in the complex process of modal four-wave mixing. In other words, the associated nonlinear redistribution of the mode powers which ultimately favors the fundamental mode of the fiber can be described in the framework of statistical mechanics applied to the gas of photons populating the fiber modes. On the one hand, this description has been corroborated by a series of experiments by different groups. On the other hand, some open issues still remain, and we offer a perspective for future studies in this emerging and controversial field of research.\",\"PeriodicalId\":7374,\"journal\":{\"name\":\"Advances in Physics: X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics: X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/23746149.2023.2228018\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2023.2228018","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

梯度折射率多模光纤输出端的横向强度分布在低强度背景下从散斑到钟形光束的输入功率诱导转换称为空间光束自清洁。其显著的性能是提高了输出光束的亮度和抗光纤弯曲和挤压。这些特性允许克服多模光纤在低输出光束质量方面的限制,这对于许多技术应用是非常有前途的。在这篇综述中,我们概述了空间光束自清洁的最新进展,它可以被看作是模态四波混频复杂过程中的一种热平衡状态。换句话说,相关的模式功率的非线性再分布最终有利于光纤的基本模式,可以在应用于填充光纤模式的光子气体的统计力学框架中描述。一方面,这一描述已被不同小组的一系列实验所证实。另一方面,一些尚未解决的问题仍然存在,我们为这一新兴和有争议的研究领域的未来研究提供了一个视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On spatial beam self-cleaning from the perspective of optical wave thermalization in multimode graded-index fibers
The input power-induced transformation of the transverse intensity profile at the output of graded-index multimode optical fibers from speckles into a bell-shaped beam sitting on a low intensity background is known as spatial beam self-cleaning. Its remarkable properties are the output beam brightness improvement and robustness to fiber bending and squeezing. These properties permit to overcome the limitations of multimode fibers in terms of low output beam quality, which is very promising for a host of technological applications. In this review, we outline recent progress in the understanding of spatial beam self-cleaning, which can be seen as a state of thermal equilibrium in the complex process of modal four-wave mixing. In other words, the associated nonlinear redistribution of the mode powers which ultimately favors the fundamental mode of the fiber can be described in the framework of statistical mechanics applied to the gas of photons populating the fiber modes. On the one hand, this description has been corroborated by a series of experiments by different groups. On the other hand, some open issues still remain, and we offer a perspective for future studies in this emerging and controversial field of research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Physics: X
Advances in Physics: X Physics and Astronomy-General Physics and Astronomy
CiteScore
13.60
自引率
0.00%
发文量
37
审稿时长
13 weeks
期刊介绍: Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including: Chemistry Materials Science Engineering Biology Medicine
期刊最新文献
The Maxwell’s equations for a mechano-driven media system (MEs-f-MDMS) Probing excitons with time-resolved momentum microscopy Pore-scale viscous fingering as a mechanism for pattern formation – a historical overview, application, and the ways of controlling it Orbital angular momentum of Bloch electrons: equilibrium formulation, magneto-electric phenomena, and the orbital Hall effect Multiscale modelling of biopolymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1