{"title":"离散种群模型中收获时机的最优控制","authors":"Skylar Grey, S. Lenhart, F. Hilker, Daniel Franco","doi":"10.1111/nrm.12321","DOIUrl":null,"url":null,"abstract":"Harvest plays an important role in management decisions, from fisheries to pest control. Discrete‐time models enable us to explore the importance of timing of management decisions, including the order of events of particular actions. We derive novel mechanistic models featuring explicit within‐season harvest timing and level. We explore optimization of within‐season harvest level and timing through optimal control of these population models. With a fixed harvest level, harvest timing is taken as the control. Then both harvest timing and level are used as controls. We maximize an objective functional which includes management goals of maximizing yield, maximizing stock, and minimizing costs associated with both harvest intensity and harvest timing. While standard models with compensatory population dynamics predict it is best to harvest as early as possible in the season, we find instances where harvesting later in the season is optimal. Furthermore, we discover interesting oscillations in the population size, which would be unexpected in the model without time‐varying controls.","PeriodicalId":49778,"journal":{"name":"Natural Resource Modeling","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/nrm.12321","citationCount":"4","resultStr":"{\"title\":\"Optimal control of harvest timing in discrete population models\",\"authors\":\"Skylar Grey, S. Lenhart, F. Hilker, Daniel Franco\",\"doi\":\"10.1111/nrm.12321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harvest plays an important role in management decisions, from fisheries to pest control. Discrete‐time models enable us to explore the importance of timing of management decisions, including the order of events of particular actions. We derive novel mechanistic models featuring explicit within‐season harvest timing and level. We explore optimization of within‐season harvest level and timing through optimal control of these population models. With a fixed harvest level, harvest timing is taken as the control. Then both harvest timing and level are used as controls. We maximize an objective functional which includes management goals of maximizing yield, maximizing stock, and minimizing costs associated with both harvest intensity and harvest timing. While standard models with compensatory population dynamics predict it is best to harvest as early as possible in the season, we find instances where harvesting later in the season is optimal. Furthermore, we discover interesting oscillations in the population size, which would be unexpected in the model without time‐varying controls.\",\"PeriodicalId\":49778,\"journal\":{\"name\":\"Natural Resource Modeling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/nrm.12321\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resource Modeling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/nrm.12321\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resource Modeling","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/nrm.12321","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Optimal control of harvest timing in discrete population models
Harvest plays an important role in management decisions, from fisheries to pest control. Discrete‐time models enable us to explore the importance of timing of management decisions, including the order of events of particular actions. We derive novel mechanistic models featuring explicit within‐season harvest timing and level. We explore optimization of within‐season harvest level and timing through optimal control of these population models. With a fixed harvest level, harvest timing is taken as the control. Then both harvest timing and level are used as controls. We maximize an objective functional which includes management goals of maximizing yield, maximizing stock, and minimizing costs associated with both harvest intensity and harvest timing. While standard models with compensatory population dynamics predict it is best to harvest as early as possible in the season, we find instances where harvesting later in the season is optimal. Furthermore, we discover interesting oscillations in the population size, which would be unexpected in the model without time‐varying controls.
期刊介绍:
Natural Resource Modeling is an international journal devoted to mathematical modeling of natural resource systems. It reflects the conceptual and methodological core that is common to model building throughout disciplines including such fields as forestry, fisheries, economics and ecology. This core draws upon the analytical and methodological apparatus of mathematics, statistics, and scientific computing.