随机故障和多重可分配原因下生产计划、维修调度和非中心卡方图参数的集成

IF 0.9 Q4 ENGINEERING, MANUFACTURING Journal of Advanced Manufacturing Systems Pub Date : 2021-06-02 DOI:10.1142/S0219686721500414
A. Salmasnia, Ehsan Emamjomeh, M. Maleki
{"title":"随机故障和多重可分配原因下生产计划、维修调度和非中心卡方图参数的集成","authors":"A. Salmasnia, Ehsan Emamjomeh, M. Maleki","doi":"10.1142/S0219686721500414","DOIUrl":null,"url":null,"abstract":"This study presents an integrated model of three dependent concepts including production planning, maintenance scheduling, and statistical process monitoring (SPM) in order to improve both economic and statistical features of the production systems. To bring the proposed model closer to real applications, the possibility of occurring several types of assignable causes during the production cycle is taken into account. Besides, a noncentral chi-square chart is used for simultaneous monitoring of the process mean and variability parameters. Moreover, it is assumed that both time-to-failure and time-to-shift are Weibull distributed random variables. In other words, the system may suddenly fail and goes to an out-of-control condition with two different increasing rates including the failure rate function and the shift occurrence rate function. Hence, to improve the system reliability, a nonuniform sampling scheme is developed in which a same integrated shift occurrence rate is obtained for all intervals. The goal of the model is to minimize the expected total cost per time unit, subject to some statistical constraints. Ultimately, three comparative studies are given to demonstrate the efficiency of the proposed model. The first one indicates that a nonuniform sampling scheme reduces the expected total cost and the length of out-of-control period. The second one confirms that considering the system failure not only increases the length of in-control period but also improves the economic feature of the production system. The third one shows that using chi-square chart decreases the quality loss cost which in turn decreases the expected total cost.","PeriodicalId":44935,"journal":{"name":"Journal of Advanced Manufacturing Systems","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Integration of Production Planning, Maintenance Scheduling and Noncentral Chi-square Chart Parameters with Random Failures and Multiple Assignable Causes\",\"authors\":\"A. Salmasnia, Ehsan Emamjomeh, M. Maleki\",\"doi\":\"10.1142/S0219686721500414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an integrated model of three dependent concepts including production planning, maintenance scheduling, and statistical process monitoring (SPM) in order to improve both economic and statistical features of the production systems. To bring the proposed model closer to real applications, the possibility of occurring several types of assignable causes during the production cycle is taken into account. Besides, a noncentral chi-square chart is used for simultaneous monitoring of the process mean and variability parameters. Moreover, it is assumed that both time-to-failure and time-to-shift are Weibull distributed random variables. In other words, the system may suddenly fail and goes to an out-of-control condition with two different increasing rates including the failure rate function and the shift occurrence rate function. Hence, to improve the system reliability, a nonuniform sampling scheme is developed in which a same integrated shift occurrence rate is obtained for all intervals. The goal of the model is to minimize the expected total cost per time unit, subject to some statistical constraints. Ultimately, three comparative studies are given to demonstrate the efficiency of the proposed model. The first one indicates that a nonuniform sampling scheme reduces the expected total cost and the length of out-of-control period. The second one confirms that considering the system failure not only increases the length of in-control period but also improves the economic feature of the production system. The third one shows that using chi-square chart decreases the quality loss cost which in turn decreases the expected total cost.\",\"PeriodicalId\":44935,\"journal\":{\"name\":\"Journal of Advanced Manufacturing Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Manufacturing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219686721500414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Manufacturing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219686721500414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 3

摘要

本研究提出了一个由三个相关概念组成的集成模型,包括生产计划、维护调度和统计过程监控(SPM),以改善生产系统的经济和统计特征。为了使所提出的模型更接近实际应用,考虑了在生产周期中发生几种类型的可分配原因的可能性。此外,使用非中心卡方图同时监测过程平均值和变异性参数。此外,假设失效时间和转移时间都是威布尔分布的随机变量。换句话说,系统可能突然发生故障并进入失控状态,具有两种不同的增加率,包括故障率函数和换档发生率函数。因此,为了提高系统的可靠性,开发了一种非均匀采样方案,其中对于所有区间都获得相同的积分偏移发生率。该模型的目标是在受到一些统计约束的情况下,最大限度地减少每时间单位的预期总成本。最后,通过三个比较研究来验证该模型的有效性。第一个结果表明,非均匀采样方案降低了预期的总成本和失控周期的长度。第二个结果证实,考虑系统故障不仅增加了控制期的长度,而且改善了生产系统的经济性。第三个结果表明,使用卡方图降低了质量损失成本,进而降低了预期的总成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of Production Planning, Maintenance Scheduling and Noncentral Chi-square Chart Parameters with Random Failures and Multiple Assignable Causes
This study presents an integrated model of three dependent concepts including production planning, maintenance scheduling, and statistical process monitoring (SPM) in order to improve both economic and statistical features of the production systems. To bring the proposed model closer to real applications, the possibility of occurring several types of assignable causes during the production cycle is taken into account. Besides, a noncentral chi-square chart is used for simultaneous monitoring of the process mean and variability parameters. Moreover, it is assumed that both time-to-failure and time-to-shift are Weibull distributed random variables. In other words, the system may suddenly fail and goes to an out-of-control condition with two different increasing rates including the failure rate function and the shift occurrence rate function. Hence, to improve the system reliability, a nonuniform sampling scheme is developed in which a same integrated shift occurrence rate is obtained for all intervals. The goal of the model is to minimize the expected total cost per time unit, subject to some statistical constraints. Ultimately, three comparative studies are given to demonstrate the efficiency of the proposed model. The first one indicates that a nonuniform sampling scheme reduces the expected total cost and the length of out-of-control period. The second one confirms that considering the system failure not only increases the length of in-control period but also improves the economic feature of the production system. The third one shows that using chi-square chart decreases the quality loss cost which in turn decreases the expected total cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Manufacturing Systems
Journal of Advanced Manufacturing Systems ENGINEERING, MANUFACTURING-
CiteScore
2.90
自引率
14.30%
发文量
32
期刊介绍: Journal of Advanced Manufacturing Systems publishes original papers pertaining to state-of-the-art research and development, product development, process planning, resource planning, applications, and tools in the areas related to advanced manufacturing. The journal addresses: - Manufacturing Systems - Collaborative Design - Collaborative Decision Making - Product Simulation - In-Process Modeling - Resource Planning - Resource Simulation - Tooling Design - Planning and Scheduling - Virtual Reality Technologies and Applications - CAD/CAE/CAM Systems - Networking and Distribution - Supply Chain Management
期刊最新文献
Multi-objective optimization of machining parameters of 13-8 ph steel for die sinking edm using rsm and hybrid human eye vision algorithm Integrating production scheduling and vehicle routing decisions at the operational decision level: a review and discussion extension Phase, Microstructure and Tensile Strength of Ultrasonically Stir Casted Al6061-TiC-Graphite Hybrid Metal Matrix Composites Maximum thinning rate prediction of friction heat single point incremental forming for AZ31B magnesium alloy based on BP neural network Experimental Investigation and Soft Computing based Assessment using ANN-MOGWO- A Hybrid approach for Inconel(825)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1