Dong Yuan, Lin Xianyu, L. Yanguo, Guofu Zhou, Li Nan
{"title":"提高LED光提取效率的表面微结构参数优化","authors":"Dong Yuan, Lin Xianyu, L. Yanguo, Guofu Zhou, Li Nan","doi":"10.1504/IJNM.2018.10016344","DOIUrl":null,"url":null,"abstract":"Surface structure modification is an effective way to enhance light extraction of LED, which is limited by total internal reflection on the interfacial surface. The periodic surface structure manufactured by micromachining was proved to be a feasible way to enhance the light extraction efficiency (LEE) of LEDs. In order to obtain the highest LEE, need to optimise the structural parameters. In this paper, a simplified ray tracing optical model was built to find out a high performance microstructure parameters by simulation. Then, a mathematical model was built to further optimise the optical simulation results, obtained the optimal microstructure parameters for LEE. The performance of optimal microstructure was also studied by optical simulation.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":"14 1","pages":"342"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface microstructure parameter optimisation for enhancing light extraction efficiency of LED\",\"authors\":\"Dong Yuan, Lin Xianyu, L. Yanguo, Guofu Zhou, Li Nan\",\"doi\":\"10.1504/IJNM.2018.10016344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface structure modification is an effective way to enhance light extraction of LED, which is limited by total internal reflection on the interfacial surface. The periodic surface structure manufactured by micromachining was proved to be a feasible way to enhance the light extraction efficiency (LEE) of LEDs. In order to obtain the highest LEE, need to optimise the structural parameters. In this paper, a simplified ray tracing optical model was built to find out a high performance microstructure parameters by simulation. Then, a mathematical model was built to further optimise the optical simulation results, obtained the optimal microstructure parameters for LEE. The performance of optimal microstructure was also studied by optical simulation.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\"14 1\",\"pages\":\"342\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNM.2018.10016344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2018.10016344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Surface microstructure parameter optimisation for enhancing light extraction efficiency of LED
Surface structure modification is an effective way to enhance light extraction of LED, which is limited by total internal reflection on the interfacial surface. The periodic surface structure manufactured by micromachining was proved to be a feasible way to enhance the light extraction efficiency (LEE) of LEDs. In order to obtain the highest LEE, need to optimise the structural parameters. In this paper, a simplified ray tracing optical model was built to find out a high performance microstructure parameters by simulation. Then, a mathematical model was built to further optimise the optical simulation results, obtained the optimal microstructure parameters for LEE. The performance of optimal microstructure was also studied by optical simulation.