Sandeep Banik, Thiagarajan Ramachandran, A. Bhattacharya, S. D. Bopardikar
{"title":"自动循环中的对手网络物理防御计划","authors":"Sandeep Banik, Thiagarajan Ramachandran, A. Bhattacharya, S. D. Bopardikar","doi":"10.1145/3596222","DOIUrl":null,"url":null,"abstract":"Security of cyber-physical systems (CPS) continues to pose new challenges due to the tight integration and operational complexity of the cyber and physical components. To address these challenges, this article presents a domain-aware, optimization-based approach to determine an effective defense strategy for CPS in an automated fashion—by emulating a strategic adversary in the loop that exploits system vulnerabilities, interconnection of the CPS, and the dynamics of the physical components. Our approach builds on an adversarial decision-making model based on a Markov Decision Process (MDP) that determines the optimal cyber (discrete) and physical (continuous) attack actions over a CPS attack graph. The defense planning problem is modeled as a non-zero-sum game between the adversary and defender. We use a model-free reinforcement learning method to solve the adversary’s problem as a function of the defense strategy. We then employ Bayesian optimization (BO) to find an approximate best-response for the defender to harden the network against the resulting adversary policy. This process is iterated multiple times to improve the strategy for both players. We demonstrate the effectiveness of our approach on a ransomware-inspired graph with a smart building system as the physical process. Numerical studies show that our method converges to a Nash equilibrium for various defender-specific costs of network hardening.","PeriodicalId":7055,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":" ","pages":"1 - 25"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Adversary-in-the-Loop Cyber-Physical Defense Planning\",\"authors\":\"Sandeep Banik, Thiagarajan Ramachandran, A. Bhattacharya, S. D. Bopardikar\",\"doi\":\"10.1145/3596222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security of cyber-physical systems (CPS) continues to pose new challenges due to the tight integration and operational complexity of the cyber and physical components. To address these challenges, this article presents a domain-aware, optimization-based approach to determine an effective defense strategy for CPS in an automated fashion—by emulating a strategic adversary in the loop that exploits system vulnerabilities, interconnection of the CPS, and the dynamics of the physical components. Our approach builds on an adversarial decision-making model based on a Markov Decision Process (MDP) that determines the optimal cyber (discrete) and physical (continuous) attack actions over a CPS attack graph. The defense planning problem is modeled as a non-zero-sum game between the adversary and defender. We use a model-free reinforcement learning method to solve the adversary’s problem as a function of the defense strategy. We then employ Bayesian optimization (BO) to find an approximate best-response for the defender to harden the network against the resulting adversary policy. This process is iterated multiple times to improve the strategy for both players. We demonstrate the effectiveness of our approach on a ransomware-inspired graph with a smart building system as the physical process. Numerical studies show that our method converges to a Nash equilibrium for various defender-specific costs of network hardening.\",\"PeriodicalId\":7055,\"journal\":{\"name\":\"ACM Transactions on Cyber-Physical Systems\",\"volume\":\" \",\"pages\":\"1 - 25\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3596222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3596222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Security of cyber-physical systems (CPS) continues to pose new challenges due to the tight integration and operational complexity of the cyber and physical components. To address these challenges, this article presents a domain-aware, optimization-based approach to determine an effective defense strategy for CPS in an automated fashion—by emulating a strategic adversary in the loop that exploits system vulnerabilities, interconnection of the CPS, and the dynamics of the physical components. Our approach builds on an adversarial decision-making model based on a Markov Decision Process (MDP) that determines the optimal cyber (discrete) and physical (continuous) attack actions over a CPS attack graph. The defense planning problem is modeled as a non-zero-sum game between the adversary and defender. We use a model-free reinforcement learning method to solve the adversary’s problem as a function of the defense strategy. We then employ Bayesian optimization (BO) to find an approximate best-response for the defender to harden the network against the resulting adversary policy. This process is iterated multiple times to improve the strategy for both players. We demonstrate the effectiveness of our approach on a ransomware-inspired graph with a smart building system as the physical process. Numerical studies show that our method converges to a Nash equilibrium for various defender-specific costs of network hardening.