基于人工神经网络和无损检测的地聚合物混凝土抗压强度预测

IF 1.1 Q3 ENGINEERING, CIVIL Civil and Environmental Engineering Pub Date : 2022-11-07 DOI:10.2478/cee-2022-0060
Hatem H. Almasaeid, Abdelmajeed Alkasassbeh, B. Yasin
{"title":"基于人工神经网络和无损检测的地聚合物混凝土抗压强度预测","authors":"Hatem H. Almasaeid, Abdelmajeed Alkasassbeh, B. Yasin","doi":"10.2478/cee-2022-0060","DOIUrl":null,"url":null,"abstract":"Abstract A promising substitute for regular concrete is geopolymer concrete. Engineering mechanical parameters of geopolymer concrete, including compressive strength, are frequently measured in the laboratory or in-situ via experimental destructive tests, which calls for a significant quantity of raw materials, a longer time to prepare the samples, and expensive machinery. Thus, to evaluate compressive strength, non-destructive testing is preferred. Therefore, the objective of this research is to develop an artificial neural network model based on the results of destructive and non-destructive tests to assess the compressive strength of geopolymer concrete without needing further destructive tests. According to the artificial neural network analysis developed in this study, the compressive strength of geopolymer concrete can be predicted rather accurately by combining the results of the non-destructive with R2 of 0.9286.","PeriodicalId":42034,"journal":{"name":"Civil and Environmental Engineering","volume":"18 1","pages":"655 - 665"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Geopolymer Concrete Compressive Strength Utilizing Artificial Neural Network and Nondestructive Testing\",\"authors\":\"Hatem H. Almasaeid, Abdelmajeed Alkasassbeh, B. Yasin\",\"doi\":\"10.2478/cee-2022-0060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A promising substitute for regular concrete is geopolymer concrete. Engineering mechanical parameters of geopolymer concrete, including compressive strength, are frequently measured in the laboratory or in-situ via experimental destructive tests, which calls for a significant quantity of raw materials, a longer time to prepare the samples, and expensive machinery. Thus, to evaluate compressive strength, non-destructive testing is preferred. Therefore, the objective of this research is to develop an artificial neural network model based on the results of destructive and non-destructive tests to assess the compressive strength of geopolymer concrete without needing further destructive tests. According to the artificial neural network analysis developed in this study, the compressive strength of geopolymer concrete can be predicted rather accurately by combining the results of the non-destructive with R2 of 0.9286.\",\"PeriodicalId\":42034,\"journal\":{\"name\":\"Civil and Environmental Engineering\",\"volume\":\"18 1\",\"pages\":\"655 - 665\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cee-2022-0060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cee-2022-0060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要地质聚合物混凝土是普通混凝土的一种很有前途的替代品。地质聚合物混凝土的工程力学参数,包括抗压强度,经常在实验室或现场通过实验破坏性测试进行测量,这需要大量的原材料、更长的样品制备时间和昂贵的机械。因此,为了评估抗压强度,首选无损检测。因此,本研究的目的是基于破坏性和非破坏性测试的结果开发一个人工神经网络模型,以评估地质聚合物混凝土的抗压强度,而无需进一步的破坏性测试。根据本研究开发的人工神经网络分析,将R2为0.9286的无损检测结果相结合,可以相当准确地预测地聚合物混凝土的抗压强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Geopolymer Concrete Compressive Strength Utilizing Artificial Neural Network and Nondestructive Testing
Abstract A promising substitute for regular concrete is geopolymer concrete. Engineering mechanical parameters of geopolymer concrete, including compressive strength, are frequently measured in the laboratory or in-situ via experimental destructive tests, which calls for a significant quantity of raw materials, a longer time to prepare the samples, and expensive machinery. Thus, to evaluate compressive strength, non-destructive testing is preferred. Therefore, the objective of this research is to develop an artificial neural network model based on the results of destructive and non-destructive tests to assess the compressive strength of geopolymer concrete without needing further destructive tests. According to the artificial neural network analysis developed in this study, the compressive strength of geopolymer concrete can be predicted rather accurately by combining the results of the non-destructive with R2 of 0.9286.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
58.30%
发文量
69
期刊最新文献
Tensile Force Distribution And Development Within Geogrid-Reinforced Retaining Wall Evaluation of Bituminous Moisture Damage of High Silica Aggregate Research on the Long-Term Acoustic Efficiency of Asphalt Mixtures Using CRM in Test Sections of Slovak Roads Using Tuff and Limestone Sand to Minimize Water Consumption of Pavement Construction in Arid Regions Role of Real Estate Management Firms Toward Sustainability in India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1