美国印地安那州中部硬木区多种粗木屑死亡日期的测定

IF 1.1 4区 农林科学 Q3 FORESTRY Tree-Ring Research Pub Date : 2018-07-01 DOI:10.3959/1536-1098-74.2.135
M. R. Alexander, C. Rollinson, D. Moore, J. Speer, Darrin L. Rubino
{"title":"美国印地安那州中部硬木区多种粗木屑死亡日期的测定","authors":"M. R. Alexander, C. Rollinson, D. Moore, J. Speer, Darrin L. Rubino","doi":"10.3959/1536-1098-74.2.135","DOIUrl":null,"url":null,"abstract":"Abstract Coarse woody debris (CWD; i.e. downed limbs and boles) serves numerous ecosystem functions, which vary according to the degree of decay. CWD decay is often described using five categories based on readily observed physical characteristics ranging from freshly fallen (Class I) to advanced decay with little structural integrity (Class V). Though useful in categorizing downed wood in a forest, these categories do not necessarily provide information about time since death or the decay process. Dendrochronology can be used to assign death dates to CWD and begin to provide a temporal description of the decay process. We used standard dendrochronological techniques to determine the death dates of 94 CWD samples from five common hardwood taxa in southern Indiana. Across taxa, the time since death of Class I (1.4 ± 1.7 years; mean ± SD; least decayed class) was significantly shorter than Class II (5.2 ± 3.6 years), which was shorter than the more decayed classes (Class III: 11.5 ± 4.9, and Class IV: 11.2 ± 5.6 years). Within this general trend, time since death within a decay class varied greatly among taxa. Combining dendrochronology techniques with visual decay characteristics can improve our understanding of CWD's role and provide a more precise timeline for biomass and nutrient turnover within forested systems.","PeriodicalId":54416,"journal":{"name":"Tree-Ring Research","volume":"74 1","pages":"135 - 143"},"PeriodicalIF":1.1000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3959/1536-1098-74.2.135","citationCount":"4","resultStr":"{\"title\":\"Determination of Death Dates of Coarse Woody Debris of Multiple Species in the Central Hardwood Region (Indiana, USA)\",\"authors\":\"M. R. Alexander, C. Rollinson, D. Moore, J. Speer, Darrin L. Rubino\",\"doi\":\"10.3959/1536-1098-74.2.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Coarse woody debris (CWD; i.e. downed limbs and boles) serves numerous ecosystem functions, which vary according to the degree of decay. CWD decay is often described using five categories based on readily observed physical characteristics ranging from freshly fallen (Class I) to advanced decay with little structural integrity (Class V). Though useful in categorizing downed wood in a forest, these categories do not necessarily provide information about time since death or the decay process. Dendrochronology can be used to assign death dates to CWD and begin to provide a temporal description of the decay process. We used standard dendrochronological techniques to determine the death dates of 94 CWD samples from five common hardwood taxa in southern Indiana. Across taxa, the time since death of Class I (1.4 ± 1.7 years; mean ± SD; least decayed class) was significantly shorter than Class II (5.2 ± 3.6 years), which was shorter than the more decayed classes (Class III: 11.5 ± 4.9, and Class IV: 11.2 ± 5.6 years). Within this general trend, time since death within a decay class varied greatly among taxa. Combining dendrochronology techniques with visual decay characteristics can improve our understanding of CWD's role and provide a more precise timeline for biomass and nutrient turnover within forested systems.\",\"PeriodicalId\":54416,\"journal\":{\"name\":\"Tree-Ring Research\",\"volume\":\"74 1\",\"pages\":\"135 - 143\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3959/1536-1098-74.2.135\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree-Ring Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3959/1536-1098-74.2.135\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree-Ring Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3959/1536-1098-74.2.135","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 4

摘要

摘要粗木质碎屑(CWD;即倒下的树枝和树干)具有多种生态系统功能,这些功能因腐烂程度而异。CWD衰变通常根据容易观察到的物理特征分为五类进行描述,从新坠落(I类)到结构完整性较差的高级衰变(V类)。尽管这些类别在对森林中倒下的木材进行分类时很有用,但它们不一定能提供死亡后的时间或腐烂过程的信息。树木年表可以用来确定CWD的死亡日期,并开始提供腐烂过程的时间描述。我们使用标准的树木年代学技术来确定印第安纳州南部五个常见硬木分类群中94个CWD样本的死亡日期。在各分类群中,I类的死亡时间(1.4±1.7年;平均值±SD;腐烂程度最低的类别)明显短于II类(5.2±3.6年),后者短于腐烂程度较高的类别(III类:11.5±4.9,IV类:11.2±5.6年)。在这一总体趋势中,腐烂类中死亡后的时间在分类群之间差异很大。将树木年代学技术与视觉衰退特征相结合,可以提高我们对CWD作用的理解,并为森林系统内的生物量和养分周转提供更精确的时间表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of Death Dates of Coarse Woody Debris of Multiple Species in the Central Hardwood Region (Indiana, USA)
Abstract Coarse woody debris (CWD; i.e. downed limbs and boles) serves numerous ecosystem functions, which vary according to the degree of decay. CWD decay is often described using five categories based on readily observed physical characteristics ranging from freshly fallen (Class I) to advanced decay with little structural integrity (Class V). Though useful in categorizing downed wood in a forest, these categories do not necessarily provide information about time since death or the decay process. Dendrochronology can be used to assign death dates to CWD and begin to provide a temporal description of the decay process. We used standard dendrochronological techniques to determine the death dates of 94 CWD samples from five common hardwood taxa in southern Indiana. Across taxa, the time since death of Class I (1.4 ± 1.7 years; mean ± SD; least decayed class) was significantly shorter than Class II (5.2 ± 3.6 years), which was shorter than the more decayed classes (Class III: 11.5 ± 4.9, and Class IV: 11.2 ± 5.6 years). Within this general trend, time since death within a decay class varied greatly among taxa. Combining dendrochronology techniques with visual decay characteristics can improve our understanding of CWD's role and provide a more precise timeline for biomass and nutrient turnover within forested systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tree-Ring Research
Tree-Ring Research 农林科学-林学
CiteScore
2.40
自引率
12.50%
发文量
15
审稿时长
>36 weeks
期刊介绍: Tree-Ring Research (TRR) is devoted to papers dealing with the growth rings of trees and the applications of tree-ring research in a wide variety of fields, including but not limited to archaeology, geology, ecology, hydrology, climatology, forestry, and botany. Papers involving research results, new techniques of data acquisition or analysis, and regional or subject-oriented reviews or syntheses are considered for publication. Scientific papers usually fall into two main categories. Articles should not exceed 5000 words, or approximately 20 double-spaced typewritten pages, including tables, references, and an abstract of 200 words or fewer. All manuscripts submitted as Articles are reviewed by at least two referees. Research Reports, which are usually reviewed by at least one outside referee, should not exceed 1500 words or include more than two figures. Research Reports address technical developments, describe well-documented but preliminary research results, or present findings for which the Article format is not appropriate. Book or monograph Reviews of 500 words or less are also considered. Other categories of papers are occasionally published. All papers are published only in English. Abstracts of the Articles or Reports may be printed in other languages if supplied by the author(s) with English translations.
期刊最新文献
Tree-ring analysis of red spruce timbers from the Moosilauke Ravine Lodge, White Mountains, New Hampshire Precipitation reconstruction using tree-ring chronologies from Jordan and the Eastern Mediterranean Region Analysis of the Climate Signal in Subannual Width Measurements of Pinus nigra Tree Rings in Kastamonu Province, Turkey A Review of the Current State and Future Prospects of Dendrochronological Research in Bhutan A Case Study: Growth of Tree-Form Willow Driven by Cool, Wet Springs and Warm, Dry Summers in Teetł'it Zheh (Fort Mcpherson), Northwest Territories, Canada
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1