DeepRhole:法律案件文件中句子修辞角色标注的深度学习

IF 3.1 2区 社会学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence and Law Pub Date : 2021-11-13 DOI:10.1007/s10506-021-09304-5
Paheli Bhattacharya, Shounak Paul, Kripabandhu Ghosh, Saptarshi Ghosh, Adam Wyner
{"title":"DeepRhole:法律案件文件中句子修辞角色标注的深度学习","authors":"Paheli Bhattacharya,&nbsp;Shounak Paul,&nbsp;Kripabandhu Ghosh,&nbsp;Saptarshi Ghosh,&nbsp;Adam Wyner","doi":"10.1007/s10506-021-09304-5","DOIUrl":null,"url":null,"abstract":"<div><p>The task of rhetorical role labeling is to assign labels (such as Fact, Argument, Final Judgement, etc.) to sentences of a court case document. Rhetorical role labeling is an important problem in the field of Legal Analytics, since it can aid in various downstream tasks as well as enhances the readability of lengthy case documents. The task is challenging as case documents are highly various in structure and the rhetorical labels are often subjective. Previous works for automatic rhetorical role identification (i) mainly used Conditional Random Fields over manually handcrafted features, and (ii) focused on certain law domains only (e.g., Immigration cases, Rent law), and a particular jurisdiction/country (e.g., US, Canada, India). In this work, we improve upon the prior works on rhetorical role identification by proposing novel Deep Learning models for automatically identifying rhetorical roles, which substantially outperform the prior methods. Additionally, we show the effectiveness of the proposed models over documents from five different law domains, and from two different jurisdictions—the Supreme Court of India and the Supreme Court of the UK. Through extensive experiments over different variations of the Deep Learning models, including Transformer models based on BERT and LegalBERT, we show the robustness of the methods for the task. We also perform an extensive inter-annotator study and analyse the agreement of the predictions of the proposed model with the annotations by domain experts. We find that some rhetorical labels are inherently hard/subjective and both law experts and neural models frequently get confused in predicting them correctly.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"31 1","pages":"53 - 90"},"PeriodicalIF":3.1000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"DeepRhole: deep learning for rhetorical role labeling of sentences in legal case documents\",\"authors\":\"Paheli Bhattacharya,&nbsp;Shounak Paul,&nbsp;Kripabandhu Ghosh,&nbsp;Saptarshi Ghosh,&nbsp;Adam Wyner\",\"doi\":\"10.1007/s10506-021-09304-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The task of rhetorical role labeling is to assign labels (such as Fact, Argument, Final Judgement, etc.) to sentences of a court case document. Rhetorical role labeling is an important problem in the field of Legal Analytics, since it can aid in various downstream tasks as well as enhances the readability of lengthy case documents. The task is challenging as case documents are highly various in structure and the rhetorical labels are often subjective. Previous works for automatic rhetorical role identification (i) mainly used Conditional Random Fields over manually handcrafted features, and (ii) focused on certain law domains only (e.g., Immigration cases, Rent law), and a particular jurisdiction/country (e.g., US, Canada, India). In this work, we improve upon the prior works on rhetorical role identification by proposing novel Deep Learning models for automatically identifying rhetorical roles, which substantially outperform the prior methods. Additionally, we show the effectiveness of the proposed models over documents from five different law domains, and from two different jurisdictions—the Supreme Court of India and the Supreme Court of the UK. Through extensive experiments over different variations of the Deep Learning models, including Transformer models based on BERT and LegalBERT, we show the robustness of the methods for the task. We also perform an extensive inter-annotator study and analyse the agreement of the predictions of the proposed model with the annotations by domain experts. We find that some rhetorical labels are inherently hard/subjective and both law experts and neural models frequently get confused in predicting them correctly.</p></div>\",\"PeriodicalId\":51336,\"journal\":{\"name\":\"Artificial Intelligence and Law\",\"volume\":\"31 1\",\"pages\":\"53 - 90\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Law\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10506-021-09304-5\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-021-09304-5","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 16

摘要

修辞角色标签的任务是为法庭案件文件的句子分配标签(如事实、论据、终审判决等)。修辞角色标签是法律分析领域的一个重要问题,因为它可以帮助完成各种下游任务,并提高冗长案件文件的可读性。这项任务具有挑战性,因为案例文件的结构高度多样,修辞标签往往是主观的。先前的自动修辞角色识别工作(i)主要使用条件随机场而不是手动手工制作的特征,以及(ii)仅关注某些法律领域(例如,移民案件、租金法)和特定管辖区/国家(例如,美国、加拿大、印度)。在这项工作中,我们通过提出新的用于自动识别修辞角色的深度学习模型来改进先前关于修辞角色识别的工作,该模型大大优于先前的方法。此外,我们还展示了所提出的模型对来自五个不同法律领域和两个不同司法管辖区(印度最高法院和英国最高法院)的文件的有效性。通过对深度学习模型的不同变体进行广泛实验,包括基于BERT和LegalBERT的Transformer模型,我们展示了该任务方法的稳健性。我们还进行了广泛的注释器间研究,并分析了所提出的模型的预测与领域专家的注释的一致性。我们发现,一些修辞标签本质上是硬/主观的,法律专家和神经模型在正确预测它们时经常会感到困惑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepRhole: deep learning for rhetorical role labeling of sentences in legal case documents

The task of rhetorical role labeling is to assign labels (such as Fact, Argument, Final Judgement, etc.) to sentences of a court case document. Rhetorical role labeling is an important problem in the field of Legal Analytics, since it can aid in various downstream tasks as well as enhances the readability of lengthy case documents. The task is challenging as case documents are highly various in structure and the rhetorical labels are often subjective. Previous works for automatic rhetorical role identification (i) mainly used Conditional Random Fields over manually handcrafted features, and (ii) focused on certain law domains only (e.g., Immigration cases, Rent law), and a particular jurisdiction/country (e.g., US, Canada, India). In this work, we improve upon the prior works on rhetorical role identification by proposing novel Deep Learning models for automatically identifying rhetorical roles, which substantially outperform the prior methods. Additionally, we show the effectiveness of the proposed models over documents from five different law domains, and from two different jurisdictions—the Supreme Court of India and the Supreme Court of the UK. Through extensive experiments over different variations of the Deep Learning models, including Transformer models based on BERT and LegalBERT, we show the robustness of the methods for the task. We also perform an extensive inter-annotator study and analyse the agreement of the predictions of the proposed model with the annotations by domain experts. We find that some rhetorical labels are inherently hard/subjective and both law experts and neural models frequently get confused in predicting them correctly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
26.80%
发文量
33
期刊介绍: Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law. Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.
期刊最新文献
DiscoLQA: zero-shot discourse-based legal question answering on European Legislation A neural network to identify requests, decisions, and arguments in court rulings on custody Cytomorphological traits of fine-needle aspirates of hyalinizing trabecular tumor of the thyroid gland: A brief report. Automating petition classification in Brazil’s legal system: a two-step deep learning approach Reasoning with inconsistent precedents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1