依赖文本和作者的道德基础分类

IF 1.4 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS New Review of Hypermedia and Multimedia Pub Date : 2022-04-03 DOI:10.1080/13614568.2022.2092655
A. Lan, Ivandré Paraboni
{"title":"依赖文本和作者的道德基础分类","authors":"A. Lan, Ivandré Paraboni","doi":"10.1080/13614568.2022.2092655","DOIUrl":null,"url":null,"abstract":"ABSTRACT Moral Foundations Theory (MFT) has attracted a great deal of attention in Natural Language Processing (NLP) and social media analysis, including both applications that attempt to infer moral values inference from text, or otherwise use moral foundations information to perform another downstream task. In this work, we address the issue of moral foundations inference from text data according to two perspectives, hereby called text- and author-dependent classification, by presenting a number of experiments to compare traditional text classifiers with more recent approaches based on pre-trained language models in both English and Portuguese languages. Results suggest that moral foundations classification relies heavily on lexical information, and that different models may be more suitable to each task, and leave a number of opportunities for further research in the field.","PeriodicalId":54386,"journal":{"name":"New Review of Hypermedia and Multimedia","volume":"28 1","pages":"18 - 38"},"PeriodicalIF":1.4000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Text- and author-dependent moral foundations classification\",\"authors\":\"A. Lan, Ivandré Paraboni\",\"doi\":\"10.1080/13614568.2022.2092655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Moral Foundations Theory (MFT) has attracted a great deal of attention in Natural Language Processing (NLP) and social media analysis, including both applications that attempt to infer moral values inference from text, or otherwise use moral foundations information to perform another downstream task. In this work, we address the issue of moral foundations inference from text data according to two perspectives, hereby called text- and author-dependent classification, by presenting a number of experiments to compare traditional text classifiers with more recent approaches based on pre-trained language models in both English and Portuguese languages. Results suggest that moral foundations classification relies heavily on lexical information, and that different models may be more suitable to each task, and leave a number of opportunities for further research in the field.\",\"PeriodicalId\":54386,\"journal\":{\"name\":\"New Review of Hypermedia and Multimedia\",\"volume\":\"28 1\",\"pages\":\"18 - 38\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Review of Hypermedia and Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/13614568.2022.2092655\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Review of Hypermedia and Multimedia","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/13614568.2022.2092655","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

摘要道德基础理论(MFT)在自然语言处理(NLP)和社交媒体分析中引起了极大的关注,包括试图从文本中推断道德价值的应用,或以其他方式利用道德基础信息执行另一项下游任务的应用。在这项工作中,我们从两个角度来解决从文本数据中推断道德基础的问题,这两个角度被称为文本和作者依赖分类,通过进行大量实验,将传统的文本分类器与基于英语和葡萄牙语预训练语言模型的最新方法进行比较。结果表明,道德基础分类在很大程度上依赖于词汇信息,不同的模型可能更适合每项任务,并为该领域的进一步研究留下了许多机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Text- and author-dependent moral foundations classification
ABSTRACT Moral Foundations Theory (MFT) has attracted a great deal of attention in Natural Language Processing (NLP) and social media analysis, including both applications that attempt to infer moral values inference from text, or otherwise use moral foundations information to perform another downstream task. In this work, we address the issue of moral foundations inference from text data according to two perspectives, hereby called text- and author-dependent classification, by presenting a number of experiments to compare traditional text classifiers with more recent approaches based on pre-trained language models in both English and Portuguese languages. Results suggest that moral foundations classification relies heavily on lexical information, and that different models may be more suitable to each task, and leave a number of opportunities for further research in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Review of Hypermedia and Multimedia
New Review of Hypermedia and Multimedia COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.40
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The New Review of Hypermedia and Multimedia (NRHM) is an interdisciplinary journal providing a focus for research covering practical and theoretical developments in hypermedia, hypertext, and interactive multimedia.
期刊最新文献
Geo-spatial hypertext in virtual reality: mapping and navigating global news event spaces User-centred collecting for emerging formats The evolution of the author—authorship and speculative worldbuilding in Johannes Heldén’s Evolution From “screen-as-writing” theory to Internet culturology. A French perspective on digital textualities Pasifika arts Aotearoa and Wikipedia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1