{"title":"具有重叠的自相似测度的拟加倍","authors":"K. Hare, K. Hare, Sascha Troscheit","doi":"10.4171/jfg/91","DOIUrl":null,"url":null,"abstract":"The Assouad and quasi-Assouad dimensions of a metric space provide information about the extreme local geometric nature of the set. The Assouad dimension of a set has a measure theoretic analogue, which is also known as the upper regularity dimension. One reason for the interest in this notion is that a measure has finite Assouad dimension if and only if it is doubling. \nMotivated by recent progress on both the Assouad dimension of measures that satisfy a strong separation condition and the quasi-Assouad dimension of metric spaces, we introduce the notion of the quasi-Assouad dimension of a measure. As with sets, the quasi-Assouad dimension of a measure is dominated by its Assouad dimension. It dominates both the quasi-Assouad dimension of its support and the supremal local dimension of the measure, with strict inequalities possible in all cases. \nOur main focus is on self-similar measures in $\\mathbb{R}$ whose support is an interval and which may have `overlaps'. For measures that satisfy a weaker condition than the weak separation condition we prove that finite quasi-Assouad dimension is equivalent to quasi-doubling of the measure, a strictly less restrictive property than doubling. Further, we exhibit a large class of such measures for which the quasi-Assouad dimension coincides with the maximum of the local dimension at the endpoints of the support. This class includes all regular, equicontractive self-similar measures satisfying the weak separation condition, such as convolutions of uniform Cantor measures with integer ratio of dissection. Other properties of this dimension are also established and many examples are given.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Quasi-doubling of self-similar measures with overlaps\",\"authors\":\"K. Hare, K. Hare, Sascha Troscheit\",\"doi\":\"10.4171/jfg/91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Assouad and quasi-Assouad dimensions of a metric space provide information about the extreme local geometric nature of the set. The Assouad dimension of a set has a measure theoretic analogue, which is also known as the upper regularity dimension. One reason for the interest in this notion is that a measure has finite Assouad dimension if and only if it is doubling. \\nMotivated by recent progress on both the Assouad dimension of measures that satisfy a strong separation condition and the quasi-Assouad dimension of metric spaces, we introduce the notion of the quasi-Assouad dimension of a measure. As with sets, the quasi-Assouad dimension of a measure is dominated by its Assouad dimension. It dominates both the quasi-Assouad dimension of its support and the supremal local dimension of the measure, with strict inequalities possible in all cases. \\nOur main focus is on self-similar measures in $\\\\mathbb{R}$ whose support is an interval and which may have `overlaps'. For measures that satisfy a weaker condition than the weak separation condition we prove that finite quasi-Assouad dimension is equivalent to quasi-doubling of the measure, a strictly less restrictive property than doubling. Further, we exhibit a large class of such measures for which the quasi-Assouad dimension coincides with the maximum of the local dimension at the endpoints of the support. This class includes all regular, equicontractive self-similar measures satisfying the weak separation condition, such as convolutions of uniform Cantor measures with integer ratio of dissection. Other properties of this dimension are also established and many examples are given.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/91\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/91","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quasi-doubling of self-similar measures with overlaps
The Assouad and quasi-Assouad dimensions of a metric space provide information about the extreme local geometric nature of the set. The Assouad dimension of a set has a measure theoretic analogue, which is also known as the upper regularity dimension. One reason for the interest in this notion is that a measure has finite Assouad dimension if and only if it is doubling.
Motivated by recent progress on both the Assouad dimension of measures that satisfy a strong separation condition and the quasi-Assouad dimension of metric spaces, we introduce the notion of the quasi-Assouad dimension of a measure. As with sets, the quasi-Assouad dimension of a measure is dominated by its Assouad dimension. It dominates both the quasi-Assouad dimension of its support and the supremal local dimension of the measure, with strict inequalities possible in all cases.
Our main focus is on self-similar measures in $\mathbb{R}$ whose support is an interval and which may have `overlaps'. For measures that satisfy a weaker condition than the weak separation condition we prove that finite quasi-Assouad dimension is equivalent to quasi-doubling of the measure, a strictly less restrictive property than doubling. Further, we exhibit a large class of such measures for which the quasi-Assouad dimension coincides with the maximum of the local dimension at the endpoints of the support. This class includes all regular, equicontractive self-similar measures satisfying the weak separation condition, such as convolutions of uniform Cantor measures with integer ratio of dissection. Other properties of this dimension are also established and many examples are given.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.