E. A. Egorova, G. Gooris, Prianka Luther, J. Bouwstra, A. Kros, A. Boyle
{"title":"巯基化与非巯基化肽两亲物的自组装","authors":"E. A. Egorova, G. Gooris, Prianka Luther, J. Bouwstra, A. Kros, A. Boyle","doi":"10.1002/pep2.24236","DOIUrl":null,"url":null,"abstract":"The self‐assembly properties of peptide amphiphiles make them attractive for a range of applications, such as scaffolds for cell culture, drug delivery vehicles, or as stabilizing coatings for nanoparticles. The latter application requires derivatization of the amphiphiles to enable them to bind to, and interact with, a surface. This can be achieved by introduction of a thiol which facilitates binding to gold surfaces for example. However, small changes to the composition of peptide amphiphiles can have a large impact on their self‐assembly behavior. Therefore, we have synthesized and characterized a range of amphiphiles with different peptide sequences, alkyl chain lengths, and with or without a terminal thiol. We have characterized their structure and self‐assembly using circular dichroism (CD) spectroscopy, attenuated total reflection infrared (ATR‐IR) spectroscopy, and transmission electron microscopy (TEM). We discuss how changes to the peptide sequence and alkyl chain affect self‐assembly and compare the self‐assembly properties of thiolated and non‐thiolated amphiphiles. Such knowledge not only provides fundamental insights as to how self‐assembly can be controlled, but will also be helpful in determining which amphiphiles are most suitable for use as stabilizing nanoparticle coatings.","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/pep2.24236","citationCount":"0","resultStr":"{\"title\":\"Self‐assembly of thiolated versus non‐thiolated peptide amphiphiles\",\"authors\":\"E. A. Egorova, G. Gooris, Prianka Luther, J. Bouwstra, A. Kros, A. Boyle\",\"doi\":\"10.1002/pep2.24236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The self‐assembly properties of peptide amphiphiles make them attractive for a range of applications, such as scaffolds for cell culture, drug delivery vehicles, or as stabilizing coatings for nanoparticles. The latter application requires derivatization of the amphiphiles to enable them to bind to, and interact with, a surface. This can be achieved by introduction of a thiol which facilitates binding to gold surfaces for example. However, small changes to the composition of peptide amphiphiles can have a large impact on their self‐assembly behavior. Therefore, we have synthesized and characterized a range of amphiphiles with different peptide sequences, alkyl chain lengths, and with or without a terminal thiol. We have characterized their structure and self‐assembly using circular dichroism (CD) spectroscopy, attenuated total reflection infrared (ATR‐IR) spectroscopy, and transmission electron microscopy (TEM). We discuss how changes to the peptide sequence and alkyl chain affect self‐assembly and compare the self‐assembly properties of thiolated and non‐thiolated amphiphiles. Such knowledge not only provides fundamental insights as to how self‐assembly can be controlled, but will also be helpful in determining which amphiphiles are most suitable for use as stabilizing nanoparticle coatings.\",\"PeriodicalId\":19825,\"journal\":{\"name\":\"Peptide Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/pep2.24236\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peptide Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pep2.24236\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptide Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pep2.24236","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Self‐assembly of thiolated versus non‐thiolated peptide amphiphiles
The self‐assembly properties of peptide amphiphiles make them attractive for a range of applications, such as scaffolds for cell culture, drug delivery vehicles, or as stabilizing coatings for nanoparticles. The latter application requires derivatization of the amphiphiles to enable them to bind to, and interact with, a surface. This can be achieved by introduction of a thiol which facilitates binding to gold surfaces for example. However, small changes to the composition of peptide amphiphiles can have a large impact on their self‐assembly behavior. Therefore, we have synthesized and characterized a range of amphiphiles with different peptide sequences, alkyl chain lengths, and with or without a terminal thiol. We have characterized their structure and self‐assembly using circular dichroism (CD) spectroscopy, attenuated total reflection infrared (ATR‐IR) spectroscopy, and transmission electron microscopy (TEM). We discuss how changes to the peptide sequence and alkyl chain affect self‐assembly and compare the self‐assembly properties of thiolated and non‐thiolated amphiphiles. Such knowledge not only provides fundamental insights as to how self‐assembly can be controlled, but will also be helpful in determining which amphiphiles are most suitable for use as stabilizing nanoparticle coatings.
Peptide ScienceBiochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
5.20
自引率
4.20%
发文量
36
期刊介绍:
The aim of Peptide Science is to publish significant original research papers and up-to-date reviews covering the entire field of peptide research. Peptide Science provides a forum for papers exploring all aspects of peptide synthesis, materials, structure and bioactivity, including the use of peptides in exploring protein functions and protein-protein interactions. By incorporating both experimental and theoretical studies across the whole spectrum of peptide science, the journal serves the interdisciplinary biochemical, biomaterials, biophysical and biomedical research communities.
Peptide Science is the official journal of the American Peptide Society.